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Abstract—Automated GUI testing has been playing a key role
to uncover crashes to ensure the stability and robustness of An-
droid apps. Recent research has proposed random, search-based
and model-based testing techniques for GUI event generation. In
industrial practices, different companies have developed various
GUI exploration tools such as Facebook Sapienz, WeChat WeTest
and ByteDance Fastbot to test their products. However, these
tools are bound to their predefined GUI exploration strategies
and lack of the ability to generate human-like actions to test
meaningful scenarios. To address these challenges, Humanoid
is the first Android testing tool that utilises deep learning to
imitate human behaviours and achieves promising results over
current model-based methods. However, we find some challenges
when applying Humanoid to test our sophisticated commercial
apps such as infinite loops and low test coverage. To this end,
we performed the first case study on the performance of deep
learning techniques using commercial apps to understand the
underlying reason of the current weakness of this promising
method. Based on our findings, we propose MUBot (Multi-
modal User Bot) for human-like Android testing. Our empirical
evaluation reveals that MUBot has better performance over
Humanoid and Fastbot, our in-house testing tool on coverage
achieved and bug-fixing rate on commercial apps.

Index Terms—android testing, graphical user interface, deep
learning

I. INTRODUCTION

Mobile apps have been playing an important role in our
daily life. Several testing techniques have been proposed to
test mobile apps [1]-[6]. For instance, Android Monkey [7],
is a random testing tool that comes with the Android soft-
ware development kit and has been widely used in industrial
practices owing to its low computation cost, ease of use and
extensibility.

In industrial practises, ByteDance and Facebook, for ex-
ample, have developed in-house Android GUI testing tools
Fastbot [8] and Sapienz [9] respectively for stability and
compatibility testing for their apps.

However, existing techniques omit an important factor - real
users of these apps. Test inputs generated by these techniques
are significantly different from real user interaction traces
and cannot explore apps from a real user’s perspective. As
a result, although being effective in elevating test coverage
and uncovering crashes, most of these crashes are classified
to low priority for fixing by our developers.

To address this problem, Li et al. [10] propose Humanoid,
aided by deep learning to learn from human interactions
with mobile apps and generate test cases to imitate human
behaviour and prioritise GUI interactions according to their

importance from users’ perspective. By contrast, it can take a
very long time for other testing techniques to find a reasonable
interaction sequence and reach important states. Furthermore,
Humanoid outperforms other tools on many open-source apps
in terms of test coverage achieved [10].

Although being attractive in generating meaningful test
inputs and achieving an impressive performance on test ef-
fectiveness, it still has some weaknesses, especially when
being applied to test large-scale and sophisticated commercial
apps. In our empirical study, we find that the performance of
Humanoid on our apps with more complex interaction logic
and page-level features decreases significantly compared to its
performance on open-source apps. The primary reason for such
cases is that the inefficient GUI structure representation and
single-modal model of Humanoid leads to a low test coverage.

According to these findings, we propose in this paper,
two types of improvement to the deep learning algorithm
and present a new tool, MUBot (Multi-modal User Bot), to
improve test coverage and crash finding capabilities. Firstly,
for the inefficient GUI representation, we introduce a thinner
but more generic GUI representation instead of the original
redundant high dimensional prototype with poor extensibility.
Secondly, the model used in Humanoid is overly complex
and the single-modal mechanism restricts the diversity of test
cases, which means it can only predict one test case on
one page view. Therefore, we redesign the test generation
model into a multi-modal way to produce multiple test cases
within the same page. Finally, we conduct experiments on
large-scale and sophisticated commercial apps to measure the
effectiveness on how our methods improve the test coverage,
stability and reliability compared with Humanoid and Android
Monkey.

In summary, the main contributions in this paper are:

e A case study on the test effectiveness of Humanoid
on a commercial app and findings on its limitations
(Section II).

o A general GUI representation suitable for deep learning
algorithms as introduced in Section III-A.

e A new multi-modal model to learn from user interactions
and guide automated test input generation, presented in
Section III-B.

e An empirical evaluation (Section IV) comparing the
performance of MUBot against Humanoid and Android
Monkey. Specifically, in Section IV-D, we report the



industrial deployment of MUBot in our real daily testing
environment to study hotspot activity coverage, crash-
fixing rate and the importance of uncovered crashes from
the users’ perspective.

In addition, we report developers’ observations and lessons
learned in Section IV .

II. BACKGROUND AND MOTIVATION
Before discussing our approach in detail, we present basic
concepts in Android GUI testing that are essential in under-
standing our approach. We then provide a brief introduction
to Humanoid and discuss its limitations on testing large-scale
commercial apps by a case study as our research motivation.

A. Testing Android Apps

Graphical user interface (GUI) is the place
where the user interacts with the Android app. In Android
apps, an Activity is the implementation of a window
or screen containing various GUI elements, such as buttons
and textboxes. These GUI elements are usually referred to
as widgets or views in the context of Android develop-
ment and are responsible for user interaction handling. User
interactions (as known as actions or GUI events)
could be button clicks, text editions, screen long-touching, etc.

As Android apps are event-driven, apps can be considered
as a combination of many GUI states and the transi-
tion between these states are triggered by GUI interactions.
As a result, test inputs are normally in the form of GUI
interaction sequences. Writing or recording test in-
puts manually can be time-consuming, which gives rise to the
development of automated testing tools.

B. Humanoid Case Study

To the best of our knowledge, Humanoid is the only
existing Android testing tool that learns and imitates real user
behaviour. Unlike existing techniques that randomly select
GUI actions from all available ones in the current GUI state,
Humanoid prioritise inputs that are more likely to be per-
formed by human based on knowledge learned from real user
interactions. To understand and explore the app, Humanoid
uses GUI representation construction similar to model-based
testing techniques.

1) The Deep Learning Approach: The approach of Hu-
manoid has two phases: offline learning and online testing.
The core of Humanoid is the deep learning model which is
trained during the first phase to learn the relation between
the GUI contexts (the current GUI state of visual information
and previous GUI transitions) and user-performed interactions
(input event type such as clicking and the coordinates where
this action takes place). After the offline learning, Humanoid
is able to calculate the probability of each available actions
on a given GUI state being interacted with by a real user and
generate human-like test inputs during the online testing phase.

Similar to existing model-based test input generators, Hu-
manoid uses a GUI representation to store the history of GUI
transitions. It extracts the type of GUI elements to draw a

segmented binary channel: text and image. The text segmen-
tation channel contains GUI elements such as TextView,
TextButton and other similar elements with text attributes.

2) Case Study: We apply Humanoid to test our daily news
app, Toutiao, with 520 activities and compare activity coverage
against Monkey which is the second best tool reported by the
Humanoid literature [10].

a) Experiment Configuration: As there is a large frag-
mentation of the Android market, to improve the validity of
our study , we use real devices from different vendors with
various Android versions in contrast to Android emulators
used by the experiment presented in the Humanoid paper [10].
For each tool, we perform 3-hour test runs on each device for
three times and the activity coverage achieved is reported in
the average number across the 3 test runs.

TABLE I
ACTIVITY COVERAGE ACHIEVED BY MONKEY AND HUMANOID FOR 3
HOURS

Device Android Activity Coverage
# Model Version  Monkey  Humanoid
1 Huawei nova 5i Pro 9 3.7% 4.7%'
2 Huawei nova 5i Pro 10 6.3% 4.8%
3 Xiaomi Redmi Note 7 9 4.9% 3.8%
4 Xiaomi 9 10 4.9% 2.1%!
5 VIVO X2li 9 4.7% 2
6 VIVO iQOO V1824BA 10 7.2% 2
7 OPPO R11 8 6.2% 3.4%
8  OPPO Reno 3 5G 10 6.5% 4.4%!
9  Google Pixel 3 9 6.6% 5.0%
10 Google Pixel 3 10 8.5% 5.1%

! System out-of-memory error was observed during testing.
2 We were completely not able to run Humanoid due to system out-
of-memory.

b) Results.: As shown in Table I, Humanoid only
achieved better activity coverage once (on Huawei nova 5i Pro,
Android 9). For most test runs, Humanoid was outperformed
by Monkey and more importantly, it caused system out-of-
memory errors and we had to restart the computer when testing
on VIVO devices running both Android 9 and 10 for all the
3 test runs. This situation also occurred once on Huawei and
OPPO devices.

c¢) Findings: To study on what aspect we can improve the
deep learning approach, we manually observe the execution of
experiments and further investigate the underlying approach of
Humanoid. We make the following findings.

Finding 1. The complicated GUI abstraction model hinders
the effectiveness of GUI state abstraction and GUI action
generation.

The first disadvantage of Humanoid is the high dimension-
ality of its GUI representation model. High dimensionality
means that the more detailed element types the model has, the
more segmentation channels the model will get. For instance,
when there are only text and image widgets available, two
segmentation channels are built. However, when it is applied
to short video apps, for example, one more video widget
channel needs to be added. In addition, it also overlooks



some layout information or other rare GUI element types,
leading to inconsistent information extracted and encoded.
However, the design of sophisticated industry apps often blurs
the relationship between GUI element type and the interaction
so that it can be hard for Humanoid to infer an efficient
interactive action. For example, although there is a button
widget type, the layout type is often used to design buttons
in our apps, as it is easier to customise the appearance of
layouts. In sum, to use Humanoid, the tester needs to specify
the number of widget types in the app under test so that
Humanoid will have enough segmentation channels to encode
widgets. When the number of available channels is not enough
for all widget types, Humanoid cannot encode the model and
infer actions to test apps.

Finding 2. The complicated GUI abstraction model also
makes GUI action generation slow and even sometimes
causes system out of memory.

The second disadvantage is also introduced by this compli-
cated GUI representation. During our experiment, we find that
the stored representation model parameter file by Humanoid
is around tens of megabytes and the average time used for
generating one action is more than 5 seconds while other
model-based tools take only less than 1 second. It is also
observed that for 8 times during our experiment, the computer
reported out-of-memory errors after several minutes’ execution
of Humanoid and we had to restart the machine.

Finding 3. The single-modal deep learning model tends to
make repeated actions which may lead to infinite loops.

The last disadvantage is brought by the single-modal deep
learning model. Given a GUI state, the single-modal model
always generates the same probability distribution for widgets
available in this GUI state. When the state is reached again
during GUI exploration, the same action is likely to be selected
again, resulting in infinite loops.

C. The RICO GUI Interaction Dataset

Our approach and Humanoid are both based on supervised
deep learning using Rico, a large open-source dataset of human
interactions [11]. The Rico dataset is consisted of GUI design
information and user interaction data collected from more
than 9,300 Android apps across 27 categories, which contains
visual, textual, structural and interactive properties of more
than 66,000 unique GUI screens and 3 million GUI elements.

Figure 1 shows an example of Rico trace data. Among
all types of GUI data available in Rico, we focus on the
Interaction Traces section which includes sequences
of GUI elements and user actions connecting them. An action
is a < z,y > coordinate pair that represents the interaction
position on the screen. The scroll-like action has more than
one < x,y > pairs to indicate the start and end position. GUI
states in Rico are represented using a JSON-like format data,
which contains properties of GUI elements in the state.

III. OUR APPROACH
To address limitations of Humanoid as discussed in Sec-

tion II, we present MUBot (Multi-modal User Bot) with a
general GUI representation construction strategy and a multi-
modal deep learning model. The workflow of MUBot is
illustrated in Figure 2.

1) Model Traning. We train the deep learning model of
MUBot using Rico.

2) GUI State Abstraction. During GUI exploration, the
GUI state (app window) represented in a XML or JSON
formatted GUI tree is encoded in a single-channel grey-
scale map.

3) GUI Feature Extraction. The GUI state is then pro-
cessed by the CNN (Convolutional Neural Network) to
produce state-action sequences.

4) Probability Distribution Calculation. The state-action
sequence is processed through the GRU (Gated Re-
current Units) and MDN (Mixture Density Network)
modules to calculate the probability distribution.

5) Final Prediction. Sampling from the probability dis-
tribution, MUBot generates the final GUI action to be
performed as a prediction of human behaviour.

The major improvements can be classified into 1) parsing GUI
interaction data to the gray-scale map and 2) multi-modal
model design and training strategy. We discuss these methods
in detail in the rest of this section.

A. GUI Representation Construction

We propose a new general representation to build the
GUI structure with lower data dimensions to improve the
information volume. Practically, the primary interaction area
and GUI elements in commercial apps are often located in nest
layouts.For instance, in a video app, the primary interaction
area is the layout of the video widget along with the nest
layout of buttons around it, such as LIKE, FORWARD and
COMMENT buttons. Therefore, if we highlight these areas and
GUI elements, we can focus areas with intensive interaction
hints. This method should be independent of the amount of
GUI elements and the number of their types.

As shown as an example in Figure 3, we consider all
GUI elements without distinguishing their types to draw a
gray-scale GUI abstraction. The primary interaction area is
aggregated higher pixel value and shown in brighter blocks.

With this grey-scaled abstraction, MUBot is able to encode
all types of GUI elements in a single channel and is feasible
to test apps with different features. However, in this example,
Humanoid needs to keep three channels for images and icons,
buttons and textboxes.

B. Multi-modal Deep Learning Model

To get a more comprehensive test coverage, we usually
need to generate test inputs for deeper GUI states. This
requires our test generation to predict several possible results
rather than the best or an average result which is beyond the
capability of the single-modal mechanism used by Humanoid.
In addition to this concern, when single-modal is applied, the
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same prediction is very likely to be made and the test process
can easily fall into an infinite loop and never jumps out of it,
as shown in Figure 4.

In a video app, a typical problem can be described as a
repeated event sequence of the following:

Click a Feed — Click and Play Video — Click and Full
Screen — BACK to Feed— Click a Feed — [infinite loop]

By contrast, the multi-modal mechanism can predict several
possible results and only one result will be chosen randomly.
Therefore, it can rarely face such infinite loop problem.

In addition, the model used by Humanoid is quite complex
and takes expensive computation cost. Given these insights, we
propose a new slimmer but more efficient multi-modal model
to generate test inputs.

1) Model Structure: Recalling the workflow of MUBot
shown in Figure 2, the multi-modal model of MUBot has
three parts, a CNN module, a GRU module, and a mixture

density network. The input to the model is a stack of gray-scale
maps with corresponding action vector code, except for the last
vector element which is set to 0. The values of actions and
states are normalized to (0, 1). The action position is indicated
using an < x,y > pair where x and y are continuous values
within (0, 1) with the top-left corner as the relative origin
< 0,0 >. Action types are represented using one hot encoding.
The output of MUBot is a mixed Gaussian distribution with K
kernels. The predicted action is yielded from this distribution
by sampling.

a) CNN Module.: Convolutional neural networks (CNN)
are known as shift invariant or space invariant artificial neural
networks, based on the shared-weight architecture of the
convolution kernels or filters that slide along input features
[12]. They are widely considered as a good way to extract
image features to achieve some vision tasks like classification
or segmentation. In our approach, we use a five-layer CNN
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to extract features from gray-scale maps with ReLU as a
non-linear activation function. Each layer is followed by an
average pooling layer to shrink the spatial dimension and
convert the gray-scale map into a vector eventually. Notably,
the convolutional layers used in our model share parameters
between the four gray-scale input, as the module is used to
extract image features rather than calculate the correlation
of the adjacent. The hyper-parameters of each CNN layer is
presented in Table II. The final output is reshaped in to a
180-dimensional vector.

b) GRU Module.: Long short-term memory (LSTM) [13]
is an artificial recurrent neural network (RNN) [14] architec-
ture used for deep learning, with recognised performance in
time series processing tasks. LSTM units include a memory
cell that maintains information in memory for long periods,
which is controlled by a set of gates. However, the limitation
of LSTM is the complexity that costs many parameters and
slows down the inference time. The inference time directly

TABLE II
THE HYPER-PARAMETERS OF CNN MODULE

layer  units kernel stride padding
layerl 16 3 1 1
layer2 32 3 1 1
layer3 64 3 1 1
layer4 128 3 1 1
layer5 1 1 1 0

determines the number of test execution events and the execu-
tion time interval which is highly related to testing efficiency.
To get a reasonable trade-off, we choose Gated Recurrent
Units (GRU) [15] to process the sequence. Compared with
LSTM, GRU has a more streamlined structure with a sound
performance. In our scenario, as the input time series is short
and fixed value, we use GRU instead of the more complicated
LSTM to process the sequence data and keep the model slim
and fast.

¢) Mixture Density Network (MDN): For Android apps,
there are many possible actions for users or testing tools
to pick on the same page, such as scrolling up to browse
more content, back to the previous page, or click on some
clickable widgets. Based on this fact, we introduce MDN [16]
in MUBot as the output layer to predict a multivariate mixture
Gaussian distribution rather than a single result produced by
the single-modal model. After producing multiple options of
GUI actions, the final action picked on the current page is a
sample drawn from this Gaussian distribution. The probability
density of the predicted action can be modelled using a linear
combination of Gaussian kernel functions as follows:

K
p(yla) = 3" 7 () g (ola)

We set m; as a mixture coefficient and g; (y|z) represents a
multivariate mixture Gaussian distribution given by x. K is the
amount of sub-distributions. The value of K should be more
than the number of possible actions in any given activity to
capture and predict all possible actions. The parameters of
the mixing coefficient and the Gaussian kernel are inferred
by the neural network based on the historical sequence and
the current state. The formulation of Gaussian distribution is
shown in:

ly — i (m)||2}
2m)? o; (2) 20; (x)?

where the vector u; () is the center of the i-th kernel.
The parameters pu; (z),0; () , and mixing coefficient 7; ()
of the Gaussian kernel are represented by three independent
output layers. Each coefficient of the MDN output layer needs
neurons, that is, when the number of Gaussian kernels is K
and the dimension of the prediction output dimension is C,
the number of parameters of the mixing coefficient 7 is K
for each Gaussian distribution; the number of parameters of u
and o are K * C. Furthermore, 7 and ¢ needs to meet specific
constraints shown in the following equation. Summarization of
m; should be equal to 1, as the sum of the probability always

g9 (ylr) = exp{—



equals to 1. The o should be a positive value because this
represents the variance of the distribution.

K
2 mi=1,
g, >= 0,

Therefore, naively, the output of 7; uses softmax to meet the
conditions, and o uses an exponential activation function to
ensure a non-negative value. However, in the actual training
process, it is easy to cause the numerical explosion to even-
tually overflow. Based on these facts, we need to fix these
constraints a little bit by normalizing output, 7, to minus
its maximum before applying to softmax function and use
nnelu activation function to replace the normal e-exponential
to reduce the numerical explosion in training. The nnelu can
guarantee the o always positive even when it is slightly greater
than zero due to a tiny value eps which is helpful to prevent
explosion. The nnelu is defined as follows:

O<m<1

ift>0
ift<0

t+ eps

nnelu(t) =
®) {et — 1+ eps
The mean value p; (z) can be used without any further
changes. Finally, we can define the error in terms of the
negative

log-likelihood.
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According to the derivation of [17], we introduce a priori
constraint to prevent the model from over sinking into minority
high-frequency action types such as click. The final prior
constraint is shown in the following equation:

N K
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The final loss function is calculated as the follows:
L =Lypn + Lprior

C. Model Training and Inference

1) Model Training: The CNN layers uses the kaiming
initialization method [18], and the fully connected layer uses
orthogonal parameter initialization [19]. We train this model
with batchsize 512 and 12000 training steps. The learning
rate is set to 2e-4 initially and decayed by 1/10 at steps of
3600 and 7200. As for optimiser, we choose Adam [20] with
parameters betas to (0.5, 0.999) and we set weight_decay to
5e-4 to prevent overfitting. We set prior factor A to 0.5 and
set the number of Gaussian kernels to 8.

Due to the huge difference in the numbers of different
action types present in Rico, as shown in Table III. We set a
different weight for different actions respectively. We compute
the weights using the following equation,

total ActionNum . 1
actionTypeNum

weightaction = N
actionNum

TABLE III
THE PERCENTAGE OF EACH ACTION TYPE IN RICO

Action Types Percentage
CLICK 89.98%
LONG_CLICK 1.74%
SCROLL_LEFT_RIGHT 0.24%
SCROLL_RIGHT_LEFT 0.99%
SCROLL_TOP_DOWN 5.93%
SCROLL_BOTTOM_UP 1.12%

In this equation, weightqction s the weight of loss function
for specific action types. total ActionNum is total labelled
action in dataset. actionNum is total number of specific
labelled actions. actionT ype Num is the total number of types
of actions predicted. The final loss function is multiplied by
weightaction-

Training and validation loss

3 2000 4000 6000 8000 10000 12000 3 2000 4000 6000 8000 10000 12000
step step

Fig. 5. The Training Loss Curve and Minimum Value of Output o.min curve

The training loss curve is shown in Figure 5 (left). We also
record the minimum value of output ¢ during training. As
shown in Figure 5 (right), o.min keeps converging, which
means that the Gaussian peaks become narrow and reduce the
randomness and uncertainty of actions. This is in line with
our expectations that the model should concentrate on several
hotspot actions instead of diverging randomly.

2) Migrate to the Real Test Environment: In this section,
we describe how to deploy our model into a real automated
testing environment. We set an actuator in the app to execute
the action and send a request to the model deployed on GPU.

During the testing, as the model needs a history state
sequence to predict the action on the current state, after the
first three random executions we can then setup the testing
model. By using the predicted action and current state as
history states, it drives itself to explore the app automatically.
The algorithm is shown in Algorithm 1.

For better illustration, we pick some output of the model
generated for the daily news app, Toutiao. It is worth noting
that in this app, some reasonable actions on the feed page are
to scroll up to view more information cards, scroll left/right to
switch content topics, and click to open a certain information
card to read the content. We sample three times from the
output distribution, hide the first three histories sequences and
only show the current page. As shown in Figure 6, the model
captures multiple possible behaviors.

IV. EMPIRICAL EVALUATION

In this section, we evaluate the test effectiveness and sta-
bility of MUBot on large and sophisticated commercial apps
by comparing with Monkey and Humanoid. In addition, we



TABLE IV

SUMMARY OF SUBJECT APPS IN THE EXPERIMENT DATASET

App Name Package Size  Num. of Activities  Description

Xigua' 45 Mb 335 Xigua Video is a short video platform that hosts a variety of video clips that
are on average 2-5 minutes long.

Open Language! 62.9 Mb 145 Open Language is an language education app.

Tomato Novels!  28.8 Mb 246 Tomato Novels is a free novel reading app that provides novel reading,
downloading, interest recommendation, video book, audio book, etc.

Facebook? 49.4 Mb 720 Facebook is a social app where users can post pictures, videos, stickers on the
timeline or send to other users.

Instagram? 34.6 Mb 122 Instagram allows users to create and share photos and videos with friends and
followers and discover other users with similar interests.

Youtube? 96.9 Mb 49 YouTube is an online video platform for users to upload and watch videos.
Users can also rate, share and comment on videos.

Taobao? 186.3 Mb 545 Taobao is the largest online shopping platform in China. Users can browser

products, make orders and track logistics.

! ByteDance apps with instrumented versions and line coverage measurement capabilities.

2 Other commercial apps.

Algorithm 1 Testing Algorithm

1: Set s = state, a = action, r =
BACKprop = 0.05
2: Operate app randomly to get first three state-action pairs
and current state
input = [< Sg,ap >, < Spp1, Qpp1 >y < Spp2, Apa >, <
St+3, null >]
3: repeat
Parse the state-action to gray-scale map and action code
vector.
5:  Model inference given input and get output (distribu-
tion parameters).
6:  Sample from output distribution and get predicted
action a¢y3.
Execute action a3
Get new state Syy4.

random(0, 1),

input < [<  Sty1,a01 >, < St42,0i42 >, <
St43, Argsg >, < Sgyq,null >}
10: t<+t+1
11: until Stop the testing
SCROLL DOWN TOP  SCROLL LEFT RIGHT cLIcK

Fig. 6. Predicted Actions of the Feed Page in Toutiao. Left: Gray-scale
structure of feed page. Right: Predicted actions position and type.

also report the industrial deployment of MUBot in the context
of the daily testing of our apps with the help from their
developers and provide developers’ observations and lessons
learned. We investigate the following research questions:

RQ1. Model Improvement: Can the single-channel GUI
representation and multi-modal deep learning model re-
duce the model size and time taken to generate actions?
To answer this question, we train models of Humanoid
and MUBot using the same Rico dataset. We compare
model parameters after training and record average time
used to generate GUI actions during testing selected apps.

RQ2. Coverage Achieved: Is MUBot able to achieve better
code and activity coverage than Monkey and Humanoid?
Similar to the case study, for each subject app, we run
Monkey, Humanoid and MUBot to generate GUI actions
and explore GUI models. The experiment is set to one
hour for all apps. We compare the rate of code lines
and activities covered by these tools for our apps as we
were able to instrument these apps with line coverage
measurement capabilities. For the remaining commercial
apps, we can only report activity coverage.

RQ3. Industrial Deployment: Can MUBot visit more
hotspot activities, uncover more crashes than our
in-house model-based testing tool and achieve higher
crash-fixing rate in daily test tasks?

This question is investigated by first measuring the heat
(number of hits) of activities using 100, 000 app traces
recorded from internal manual test cases. We then report
the rate of hotspot activity visits, the ratio of fixed
crashes to all reported crashes and the importance of
reported crashes from users’ perspective. We say a bug
is fixed when the developer submitted a merge request
with the issue ID, passed the code review, and the bug
is not revealed by replaying the GUI action sequences
and does not appear in future MUBot and FastBot runs.

Subject Apps. In our experiment, we use popular commercial
apps from different categories as shown in Table IV. We use
our 3 commercial apps with source code so that we can report
line coverage by code instrumentation. To add apps from
more categories, we selected social, video, and shopping apps
with billions of daily active users. We believe these apps are
complicated and are able to serve as meaningful challenges



for Android testing in the context of real industrial practice
and user experience. We do not include utility apps as their
contents are more static and simpler compared with these apps.
Experiment Setup. We measure code line and activity cov-
erage on different models of Android devices (OPPO, VIVO,
Huawei and Google Pixel) with different Android versions
(Android 8, 9 and 10) with the same account logged in. We set
the minimum interval to generate actions to 800 milliseconds,
in case that either tool can generate actions in noticeable short
time, to avoid false positive crashes brought by running too
fast, which is unlikely to appear in human-like test sequences.
Each task runs three times without any human intervention.
We implement the deep learning model using PyTorch and
train the model on a Tesla V100 GPU for 5 hours.

A. RQI. Model Improvement

As shown in Table V, MUBot took less parameter size
and time to parse the GUI screen, infer the GUI model and
generate the next action.

TABLE V
PARAMETER SIZE AND REASONING TIME
. Million Reasoning
Tool (Model Configuration) Parameters'  Time (ms)
Humanoid 5.981 462.2
MUBot (K=8)? 0.947 52.28
MUBot (K=4)? 0.918 47.2

! The number of parameters each configuration took to
train the model.
2 The maximum number of possible actions.

After model training using the same dataset, model param-
eters generated by Humanoid is around 5 times more than
MUBot. In addition, during the following experiment of testing
apps, the average time used to generate one next action on the
GUI model is 50 milliseconds by MUBot and 462 milliseconds
for Humanoid, respectively.

Developers’ Observation and Lessons Learned. The value
of K (amount of sub-distributions) should be greater than
possible actions at a given activity. By analysing hotspot
activities and functionalities of our apps, the range is around
4 to 8. We do not choose a greater value because we want
to capture most of the hotspot actions but avoid over-fitting
users’ long-sequence but low-frequency actions.

Although 462 milliseconds is an acceptable time to reason
and generate one action when testing apps one at a time,
in our production environment, GUI testing is deployed as a
cloud service with hundreds or thousands real Android devices
connected. The cloud service receives requests containing GUI
screens from these devices and makes responses (GUI action
for each device). However, deploying Humanoid in this cloud
service is not feasible as it can only handle queries from no
more than two devices during an one-second period.

B. RQ2.1 Line Coverage Achieved

In this research question, we evaluate whether our new GUI
representation and multi-modal model can improve line and
activity coverage compared with Monkey and Humanoid.

To better illustrate the performance over time, we report
code line coverage every 5 minutes in the one-hour experiment
period for each subject app and plot an average line coverage
curve of the 3 experiment runs, as shown in Figure 7. MUBot
has the best coverage after 20 minutes for all subject apps.
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Fig. 7. Average Line Coverage

As these apps are complex with many interactive elements
in the same page which is a catastrophe for the single-modal
used by Humanoid, it achieves an even worse coverage than
Monkey in some of the subject apps (Xigua Video and Open
Language). he widget encoding strategy used by Humanoid
maintains widget types in its model and produces uneven
distribution of widget types when the complexity of apps in-
creases, resulting in fewer code line coverage when priority is
given to certain types of widgets. On the other hand, Monkey,
as a random testing tool, is hard to explore some deeper pages
and status. However, this situation often occurs in complex
commercial apps. By contrast, the single-channel grey-scale
GUI abstraction of MUBot avoids the uneven distribution
without losing the accuracy of layouts and widgets of the GUI.

C. RQ2.2 Activity Coverage Achieved

We are able to measure activity coverage for all subject apps
in this experiment. As shown in in Table VI, MUBot achieves
the best activity coverage for 6 out of 7 apps. For Xigua
on which Monkey has a better performance, our investigation
reveals the underlying reason. In fact, large commercial apps
have more interactions and logic code within the same activity.
It means activity coverage is a rough statistic. In other words,
real user interactions tend to stay in the primary activity to
enjoy the main functionality provided by the subject app.
Corner activities such as ABOUT THE APP, APP UPDATES,
etc. are relatively rarely covered by daily usage.

Humanoid is stuck in some activities, resulting in a low
activity coverage. By contrast, the randomness of Monkey
gives itself the ability to explore rarer activities even though
these activities are seldom visited in real user practice.

Developers’ Observation and Lessons Learned. In stead
of simply elevating activity coverage, developers are more con-



TABLE VI
ACTIVITY COVERAGE ACHIEVED FOR SUBJECT APPS

Apps Monkey  Humanoid MUBot
Xigua 5.05% 4.18% 4.38%
Open Language 5.17% 4.48% 5.80%
Tomato Novels 5.20% 4.84% 6.51%
Facebook 2.69% 2.30% 3.48%
Instagram 4.80% 4.55% 6.28%
Taobao 4.27% 4.64% 5.03%
YouTube 14.51% Failed 15.31%

cerned with meaningful interactions within hotspot activities
that have most important functionalities of these apps.

D. RQ3. Hotspot Activity Coverage and Crash-fixing Rate

To better understand the importance of human-like GUI
interactions, we report the industrial deployment of MUBot to
test the daily news app, Toutiao, in terms of hotspot activity
coverage and crash fixing rate, compared with our existing
model-based testing tool Fastbot [8]. The duration of the
testing is set to three hours and is repeated three times for
each tool. Fastbot supports running GUI exploration and action
execution using multiple devices in parallel and provides two
modes: independent mode (treating each device as stand-alone
testing tasks) and collaborative mode (sharing explored data
across all the devices). We use both mode of Fastbot using 50
Android devices and set the interval of test input generation
to 800 milliseconds for both MUBot and FastBot.

We present our findings as follows:

1) Hotspot Activity Coverage: The frequency of visits to
user hotspot activities achieved by MUBot, Fastbot indepen-
dent mode and Fastbot collaborative mode is 53.1%, 25.7%
and 21.2% respectively. It is reasonable that MUBot is able to
prioritise the action execution that are likely to lead to user-
preferred activities owing to the deep learning model.

2) Crash-fixing Rate: Crash-fixing rate is regarded as con-
fidential information but we are able to report that the crash-
fixing rate for bugs reported by MUBot is nearly double the
rate of Fastbot.

3) The Value of Uncovered Crashes from Users’ Perspec-
tive: The feedback from the quality assurance team reports
that among all the end users that are already affected by
crashes reported by these tools, 62% of the users are affected
by crashes reported MUBot, while only 38% of them are
affected by crashes uncovered by Fastbot. In addition, in terms
of the frequency of users’ triggering these reported crashes,
63% of the triggers that associated with the crashes revealed
by MUBot while the remaining 37% are related to Fastbot.

V. RELATED WORK
In ths section, we summarise existing work on Android
GUI testing, split into random, model-based, search-based and
machine learning based techniques.

a) Random Android GUI Testing: Android Monkey [7]
is a popular tool that randomly select actions available on the
current GUI page.According to empirical evaluations on open-
source apps [21] and commercial apps [22], Android Monkey
is still the state-of-the-practice in many situations.

b) Android Model-based and Search-based GUI testing:
Kong et al. [23] summarise that 63% of existing Android
testing publications use model-based methods. DroidBot [24]
and DroidMate [25] uses predefined GUI model representa-
tion strategy and guide action selection based on the GUI
representation during testing. In contrast to the fixed model
abstraction, APE [26] dynamically switches between coarser
and finer levels of GUI abstraction on-the-fly. Stoat [1] has
a two-phase approach including a finite state model construc-
tion using weighted GUI exploration and a Gibbs sampling
through iteratively mutating the probabilistic model. In terms
of search-based testing, Sapienz [9] uses a Pareto multi-
objective approach via genetic evolution. To improve the
evolution efficiency, TimeMachine [27] undertook test replay
by dumping and loading status of a whole emulator at certain
states that are evaluated as valuable in terms of code coverage.

¢) Machine Learning based GUI testing: Existing ma-
chine learning based methods include deep learning and re-
inforcement learning techniques. As mentioned in Section II,
Humanoid [10] proposes a deep learning approach by learning
from human interactions but suffers from heavy model and
low efficiency problems. Reinforcement learning techniques
are also used to promote the effect of testing [28], [29]
but is not suitable to learn from existing user actions. In
addition, the deep Q-network which is the combination of deep
and reinforcement learning is also explored in Android GUI
testing to help explore functionalities that can only be accessed
through a specific sequence of actions [30], [31].

However, these techniques focus on exploring more activ-
ities and GUI states, omitting the fact that hotspot activities
and primary functionalities are also critical for testing.

VI. LIMITATIONS AND FUTURE WORK
Deep Learning. Although being effective to generate mean-
ingful GUI action sequences and improve hotspot activities,
we consider the followings as limitations of our deep learning
approach and propose some feasible future work.

« Interpretability of machine learning models and under-
lying neural networks is an acknowledged difficult task
by the machine learning community [32], [33] and lacks
suitable metrics to assess the quality of explanations [34].
Therefore, the model only generates action sequences
without giving the reason, which makes the analysis of
these sequences to improve the model difficult.

+ Randomness hinders the reproducibility. We design and
use the multivariate mixture Gaussian distribution to
predict multiple possible actions to avoid infinite loops
and encourage different exploration paths. However, the
random sampling from the Gaussian distribution makes
test runs unreproducible.

GUI Representation Improvement. For GUI representation,
the gray-scale map is an efficient way to represent a page.
However, it still loses some information such as activates state,
guided text and icons. We plan to add more information in the
map and get a more accurate and detailed status description
which can serve as a good ground for the following inference.



VII. CONCLUSION

We present MUBot based on deep learning for automated

GUI

testing on sophisticated commercial apps. For GUI rep-

resentation, MUBot abstracts pages into a slim gray-scale
maps to reflect GUI elements more efficiently. MUBot learns
from interactive traces and imitates real users using its multi-

mod
test
and

al deep learning algorithm. We empirically evaluated the
effectiveness of MUBot by comparing it with Monkey
Fastbot using 3 ByteDance apps and 4 other popular

commercial apps. We also discussed developers’ observations,
lessons learned and the industrial deployment of MUBot. We
made the following observation in our experiment:
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Model parameter used by MUBot is 10 times less than
Humanoid and the time used for generating a new action
is reduced from 6 seconds to 300 milliseconds.
MUBot achieves the best line coverage for all 3 apps
with source code instrumentations and best activity
coverage for 6 out of 7 subject apps.

Bugs uncovered by MUBot are found to be more critical
by the product development and quality assurance team.
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