
CAT: Change-focused Android GUI Testing
Chao Peng

University of Edinburgh
Edinburgh, United Kingdom

chao.peng@ed.ac.uk

Ajitha Rajan
University of Edinburgh

Edinburgh, United Kingdom
arajan@ed.ac.uk

Tianqin Cai
Bytedance Network Technology

Beijing, China
caitianqin@bytedance.com

Abstract—Android Apps are frequently updated, every couple
of weeks, to keep up with changing user, hardware and business
demands. Correctness of App updates is checked through exten-
sive testing. Recent research has proposed tools for automated
GUI event generation in Android Apps. These techniques, how-
ever, are not efficient at checking App updates as the generated
GUI events do not prioritise updates, and instead explore other
App behaviours.

We address this need in this paper with CAT (Change-focused
Android GUI Testing). For App updates, at the source code or
GUI level, CAT performs change impact analysis to identify GUI
elements affected by the update. CAT then generates GUI event
sequences to interact with the affected GUI elements.

Our empirical evaluations using 21 publicly available open
source and 2 commercial Android Apps demonstrate that CAT
is able to automatically identify GUI elements affected by App
updates, generate and execute GUI event sequences focusing on
change-affected GUI elements. Comparison with two popular
GUI event generation tools, DroidBot and DroidMate, revealed
that CAT was more effective at interacting with the change-
affected GUI elements. Finally, CAT was able to detect previously
unknown change-related bugs in two open source Apps. Devel-
opers of the commercial Apps found CAT was more effective
than their in-house GUI testing tool in interacting with changed
elements and faster at detecting seeded bugs.

Index Terms—software testing, android, graphical user inter-
face, program analysis

I. INTRODUCTION

Close to 3 million Apps are available on the Google Play
store for Android users. These Apps are frequently updated,
typically every week or two, to keep up with changing
user, hardware and business demands. To ensure security and
correctness, updates in Apps need to be tested thoroughly to
ensure changes and existing functionality work as expected.

Several different testing techniques have been proposed in
the literature for testing mobile Apps [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10]. Majority of existing work focuses on
testing only one version of a mobile App. For updates in Apps,
existing test generation work is not effective since it is not
focused on updates and may not even exercise them. There is
existing body of work on regression test selection [11], [12],
[13], [8], [14], [15] - from an existing suite of tests, regression
test selection chooses a subset of tests that exercises updates
in an App. QADdroid [11] is the only tool in literature that
considers changes and their impact at the GUI level when
selecting regression tests. Regression test selection techniques
only select tests from an existing test suite, they do not
generate new tests that exercise changes. None of the existing
techniques support GUI test generation targeting updates in
Android Apps.

In this paper, we propose a novel approach for generating
GUI events targeting App updates. We support updates to
source code and the graphical user interface (GUI). We design
and implement a framework named CAT (Change-focused
Android GUI Testing) that first gathers GUI elements impacted
by the update (referred to as target GUI elements) and then
generates GUI events (or test inputs) to exercise these GUI
elements. For updates in the source code, CAT’s first step of
gathering affected GUI elements entails analysing and tracing
impact of changes in the source code to target GUI elements.
To do this, CAT builds a map relating source code functions
to GUI elements and associated Android Activities from
the App package file (APK). For updates at the GUI level,
CAT gathers all the target GUI elements affected by the update
and identifies the Activities associated with them. For the
next step of GUI event generation, CAT builds on an existing
model-based android testing tool, DroidBot [16], to generate
events interacting with the target elements. Additionally, CAT
generates event sequences, rather than single events, to interact
with the target element. Using event sequences allows for more
rigorous testing, exercising the target GUI element in different
contexts (sequence of events leading to it).

We evaluate usefulness and effectiveness of CAT in testing
App updates with a dataset of 21 open source from the
F-Droid App market and 2 popular commercial Android
Apps (TikTok and Huoshan) developed by ByteDance. We
compare performance of CAT against two state of the art
model-based GUI testing tools for Android, DroidBot (DB)
and DroidMate (DM) [16], [2]. In addition, developers at
Bytedance compared CAT to their in-house GUI testing tool.
We generate 1000 input GUI events for the open source Apps
and 2000 inputs for the commercial Apps with all three tools.

CAT was able to trace updates to target GUI elements and
generate event sequences interacting with them in all open
source and commercial Apps. We found CAT interacted with
the target GUI elements more frequently than DB and DM – 74
interactions per App on average for CAT versus 5 for DB and
3 for DM. We found events generated by CAT interact with
the target GUI elements sooner and more reliably than other
tools owing to CAT’s prioritisation of target elements in event
generation. Finally, CAT was able to reveal previously unde-
tected bugs in two Apps in the dataset – World Weather
and BeeCount. DM did not reveal bugs in any of the Apps,
while DB revealed a bug in the World Weather App but
not BeeCount. We find the combination of target element
priority in event generation along with rigorous target element
interaction with event sequences makes CAT an effective test

Fig. 1: Sequence of input events to interact with Compress
option in Amaze File Manager App

generation tool for App updates.
Unsurprisingly, no change-related bugs were found in the

released versions of the commercial Apps as these are ex-
tensively tested before release. To compare CAT against the
company’s in-house testing tool, App developers seeded a fault
in the change impacted source code for TikTok. They found
CAT was 12 times faster than their in-house tool in detecting
the crash triggering bug. In summary, the main contributions
in this paper are,

1) Novel GUI input generation technique targeting Android
App updates, with support for change impact analysis
from source code to GUI level.

2) Empirical evaluation comparing performance of CAT
against DB and DM using 21 open source Android Apps
and 2 commercial Apps, TikTok and Huoshan.

II. MOTIVATION

In this section, we highlight the need for change-focused
test input generation with a motivating example – an actively-
maintained Android App, Amaze File Manager1, with more
than 3,000 stars on GitHub. Amaze File Manager is used for
Android filesystem management. In addition to basic file op-
erations such as copy and paste, it also supports compression,
encryption and cloud service synchronisation. We use the latest
version, 3.4.3, of Amaze File Manager in this paper. Commit
history for the project revealed that the ZipService.java source
file was updated in the latest version. This file contains the
implementation for the file compression functionality.

Changes in ZipService.java affect dependent files, Pro-
cessViewerFragment.java and MainActivityHelper.java. These
two Java files are linked to the compress option in the main
menu, according to the layout file menu/contextual.xml used by
the MainActivity toolbar. Thus, the target GUI element affected
by the update is the compress option. We checked this by
clicking the compress option, and found it exercised the
changed code in ZipService.java.

Figure 1 illustrates the sequence of input events to interact
with the target GUI element–compress option: long clicking

1https://github.com/TeamAmaze/AmazeFileManager

one item in the file list, clicking the menu icon, and then
clicking the compress option. The compress option is
included in the toolbar layout of the main Activity and
this layout only appears after long clicking a file or folder.

When we run existing test input generation tools such as
DM [2] and DB [16] on this App, they explore the GUI model
without prioritising interactions with the Compress option.
As a result, these tools may not even exercise the target
GUI elements. We monitored events generated by DB as an
example, and found it entered the final view in Figure 1 after
59 GUI events. It takes a further 442 GUI events to click
the compress option (as it explores the Add ShortCut
option in the menu first) which finally triggers the updated
implementation in ZipService.java.

The uncertainity observed with existing testing tools in
exercising target GUI elements raises the need for a GUI
test generation tool that prioritises interactions with these GUI
elements. We address this need with CAT.

III. BACKGROUND

Before we discuss our approach in detail, we briefly intro-
duce basic concepts in Android App development and testing.

A. Android Apps
Android Apps are commonly programmed using Java or

Kotlin that are compiled to Java bytecode. Native code can also
be included to boost performance. Java bytecode is translated
to Dalvik bytecode and stored in a machine executable file
in .dex format. Android SDK tools bundle Dalvik bytecode,
native code (whenever present) along with any data and
resource files into an APK, an Android package, which is an
archive file with a .apk extension. The APK file is all that
is needed to install the App on Android devices.

To build the APK file, an Android project uses the fol-
lowing components: (i) source class files containing source
code implementing classes and functions for the App, (ii)
layout-XML files which defines the GUI layout of all the
Activities, and (iii) Android manifest which appears in
the App root folder as AndroidManifest.xml and describes
essential information about the App – package name of the
App (used to locate the source code), lists of components in the
file, user permissions required, hardware and software features
used, API libraries needed.

In the rest of this section, we describe terms and concepts
in Android App development used in the rest of this paper.

B. Terminology
An Activity implements a window or screen in the

App containing various GUI elements, such as buttons
and text areas. Developers can control the behaviour of each
Activity by implementing appropriate callbacks for each
life-cycle phase (i.e., created, paused, resumed, and destroyed).
Activities are first declared in the AndroidManifest.xml
file and implemented as Java classes in the source code folder.
GUI elements (also referred to as Views or Widgets)

are the basic building blocks for user interactions, such as
textboxes, buttons and containers of other GUI elements.
Views can be associated to Activities either in the source
code or defined in the XML layout files. An Activity uses a

GUI registration function, setContentView(), whose parameter
is the identity of a layout file to include Views defined in
that layout. For instance, the menu as shown in Figure 1 is
a fragment Activity and its menu items are text Views.
These Views are defined in the main menu layout XML file
and this file is referenced in the menu fragment Activity
by calling the setContentView() function.
Views are responsible for event handling. Input

events may be button clicks, edit text, touch, etc. To respond
to an event of a particular type, the View (or GUI element)
must register an appropriate event listener and implement
the corresponding callback method (called by the Android
Framework when the View is triggered by user interaction).
For example, if a button is to respond to a click event it must
register to View.onClickListener event listener and implement
the corresponding onClick() callback method. When a button
click event is detected, the Android framework will call the
onClick() method of that particular View.

An event sequence is an ordered set of input events.
The term state in this paper refers to GUI state which
is a collection of GUI information about the current screen
and all the GUI elements in it. Amaze file manager App
shown in Figure 1 has three different states although it remains
in the same Activity. We refer to change-affected GUI
elements as target GUI elements, Activities containing
a target GUI element as target Activities and states
containing a target GUI element as target states.

As Android Apps are event-driven, inputs are normally in
the form of events. Writing or recording input events manually
can be arduous and time-consuming [17]. Automated input
event generation to test Android Apps is an active area of
research. A summary of existing research in Android testing
is presented in the next section.

IV. RELATED WORK

CAT is the first Android GUI testing work focusing on
App updates. In this Section, we summarise existing work
on Android GUI test generation, split into random and model
driven testing. We also discuss related research in regression
test selection that selects tests based on App updates.

Random Android GUI Testing. Android Monkey [18] is
a popular random testing tool that examines the GUI and
randomly selects events to be exercised in the current state
until the number of exercised events exceeds the limit set by
user. DynoDroid [19] uses heuristics to select input events
rather than being fully random. However, DynoDroid has not
been maintained for years and only supports Android version
2.3.5 (Android 10 is current version). Wetzlmaier et al. [20]
amplify existing test inputs by injecting random test inputs.
This technique gives the user more control than Monkey. None
of the existing random testing tools focus on App updates.

Model-based Android Testing. DroidBot (DB) [16] and
DroidMate (DM) [21], [2] focus on generating test inputs
based on GUI models. DM guides test input generation on-
the-fly using the GUI model. DB queries the GUI model of
the subject App, computes and executes possible events in
this model. DB also provides an easy to use interface for App
exploration. CAT leverages this feature in DB for depth-first
App exploration from the start Activity.

Different from static GUI model-based test generation,
Ape [22] dynamically optimises the GUI model by lever-
aging the runtime information during testing. During App
exploration, Ape uses a decision tree-based representation
and continuously refines the GUI model with the aim of
maintaining a good balance between the model size and model
precision.

a) Regression test selection: Several studies have exam-
ined selection of regression tests based on App updates and
their impact. Focus of CAT is different - input generation for
change affected elements. None of the regression test selection
work perform input generation for changes. Nevertheless, both
CAT and regression test selection techniques rely on change
affected elements identified using change impact analysis. We
summarise change impact analysis in Android regression test
selection below.

Redroid [13], [15] and ReTestDroid [12] are regression
test selection techniques that compare Java source files from
original and updated App versions to identify changes and
compute change impact at the source code level. Regression
tests that exercise change impacted code are selected by the
tools. ReTestDroid handles more Java features than Redroid,
such as fragments, native code and asynchronous tasks. Both
tools perform change impact analysis at the source code level,
not considering GUI elements and are used for test selection
but generation. CAT performs change impact at the source
code and GUI level and focus on test generation for change
impacts.

QADroid [11] and ATOM [14] also perform test selection
for regression versions of Apps. QADroid analyses impact
of App updates on code and GUI elements. QADroid, like
CAT, builds call graphs based on FlowDroid [23] and links
events to function calls using event-function bindings defined
in source code. QADroid does not support change impact
analysis for dynamic GUI elements, as it does not support Java
reflection. ATOM [14] builds an event-flow graph for each App
version, whose nodes are Activities and edges are events
that cause Activity transitions. It then computes a delta
graph using event-flow graphs of the updated and original App
versions. Only events existing in the delta graph are picked for
regression test selection.

V. OUR APPROACH

We present CAT – Change-focused Android GUI Testing
– framework that provides, 1. Change impact analysis and 2.
Test input generation for change impacted GUI elements in
Android Apps. Our framework is publicly available at
https://github.com/CATAndroidTesting/CAT.

The workflow of CAT is presented in Figure 2. The input
files to CAT are an APK file and a user-provided change-set
for the App version under test in a JSON file. The JSON
file lists the signatures of updated classes and functions in
the source code. Output is a set of GUI event sequences to
exercise the changes and change impact in the App. Steps in
CAT’s workflow are as follows,
1. Input Preprocessing. The APK file is first analysed to pro-

duce a list of layouts in the App, Androidmanifest.XML
file, and a call graph representing calling relations be-
tween functions in the Java code.

CAT

APK File

UI and Function
Relations

</>

Source and
GUI Changes

Change Impact Analyser

GUI Elements
Reflecting
Changes

Test InputsTest InputsTest Input
APP Layout

Change-focused
Input Construction

FlowDroid + Soot

Call GraphGUI Elements

DroidBot

Step 4a. App Layout Extraction

Step 1. GUI Elements Extraction and Call Graph Construction

GUI-function Mapper

Step 2. GUI Element and Function Mapping

Step 3. Change Impact Analysis

Step 4b. Test Input Generation

DroidBot

Step 5. Test Execution

Fig. 2: Workflow of the CAT framework.

2. GUI Element and Function Mapping. CAT then traces
GUI elements to the underlying listener functions in the
source code. Using this tracing information and the call
graph from Step 1, CAT generates a combined graph for
tracing between source code functions and GUI elements.

3. Change Impact Analysis. For functions in the source
code that are marked as changed, CAT analyses impact
of the changes at the GUI level by tracing paths from
the changed functions to GUI elements in the combined
graph, generated by Step 2 and produces a list of target
GUI elements that are affected by the App update.

4. Test Input Generation. For target GUI elements from
Step 3, CAT generates test inputs as GUI event sequences
that interact with them at least once.

5. Input Execution. We execute GUI event sequences gener-
ated by CAT on a test execution engine built on top of
DB [16].

We discuss details of the design and implementation of these
working phases of CAT in the rest of this section.

A. Step 1: Input Preprocessing

We use FlowDroid [23] along with Soot [24] to preprocess
APK files to generate the following - (1) a list of layout files,
(2) AndroidManifest.XML file, and (3) a call graph whose
nodes are functions in the source code and edges represent
calling relations.

Customisation: In its current form, FlowDroid does not
expose layout files embedded within other layout files
and consequently the GUI elements defined in them. CAT
relies on mapping all GUI elements to Activities and
functions in the source code for subsequent steps that analyse
change impact and generate GUI event sequences. We, there-
fore, augment FlowDroid with a data collector that allows us
to gather information on embedded layout files.

B. Step 2: GUI Element and Function Mapping

In this step, we build a mapping from functions in Java
code to GUI elements and Activities using the artifacts

generated by FlowDroid in Step 1. This mapping will be
useful in determining the GUI events that will help exercise
the changed functions in Java code. The mapping is built in
two stages - (1) Mapping functions in Java to GUI elements,
and (2) Mapping GUI elements to the Activity class.

For the first stage, we initially take the call graph produced
by FlowDroid and extract the underlying undirected graph
from it that captures function dependencies. We refer to this
undirected call graph as function graph. Next, we identify
listeners in the function graph that get triggered when
there is an interaction with a corresponding item in the GUI.
We then expand the function graph with additional nodes for
GUI elements and edges between listener nodes and the GUI
element nodes they register an event for. Output of the first
stage is the expanded function graph that contains functions
and GUI elements as nodes with undirected edges representing
calling relationships.

In the second stage, we start by extracting all Activities
from AndroidManifest.xml. For each Activity, we track
the setContentView() method that is used to render the
associated layout. We also track the inflate() method, if
present, that is used to change the layout after the Activity
starts. We use these methods to map each Activity to the
layout it is associated with. The layout file lists all the GUI
elements that will appear to the user for that Activity.
We use the GUI element listing in the layout file along with
the Activity - Layout mapping to build an association
between GUI elements and the Activity they reside in.

The information from the first and second stages can be
merged using GUI elements as the key values connecting both.
Merged information allows us to trace functions in Java to GUI
elements that can trigger them and further to Activities
where the user can interact with these GUI elements. We refer
to this merged information as combined GUI-function map

Figure 3 shows the utility of the combined GUI-function
map, built from the Amaze file manager example, to trace
from a changed function in the source code to a GUI element
and then to an Activity that the GUI elelment is contained

Changed Function
CompressAsyncTask.compressFile()

CompressAsyncTask.execute()

ZipService.onStartCommand()

MainActivityHelper.compressFiles()

GeneralDialogCreation.
showCompressDialog()

R.id.compress

MainFragment

In contextual.xml

Called by

Called by

Called by

Called by
Linked to

Contained in

Used by

Functions GUI Definitions

Fig. 3: Tracing impact of changed function to GUI element
using combined GUI-function map.

in. Dependencies between functions are gathered from the
function graph.

Dynamic GUI elements are commonly used in Android
development with Java reflection. A dynamic GUI element
can be referred to in the source code with a symbol whose
value is resolved at runtime. To support change impact in-
volving dynamic GUI elements, we annotate these locations
so we know to explore them at runtime. When the changed
Activity is reached, we record which GUI element leads to
this Activity. It is worth noting that existing static change
impact analysis tools, such as QADroid [11], cannot precisely
handle these dynamic features.

C. Step 3: Change Impact Analysis

This step starts from the JSON file with
signatures of changed functions (package-
Name.className.functionName(parameterList)) identified
by the developer. We then perform a depth-first traversal of
the combined GUI function map starting from the changed
functions. We are only interested in visited nodes that are GUI
elements for test input generation in the next step. Transitive
closure of all such visited nodes gives the set of target GUI
elements. Events that interact with the target GUI elements
are capable of executing the changed function in the source
code. As shown in Figure 3, interacting with the widget with
the id compress in the MainFragment Activity can
trigger the changed function compressFiles() through a
chain of internal function calls. Output of this step is the set
of target GUI elements.

D. Step 4: Test Input Generation

Test input generation with CAT is built on top of
DB [16]. CAT uses DB’s depth first exploration from the start
Activity to examine different states, checking if the target
state (screen with target GUI element) is entered. Once target
state is entered, CAT generates events prioritising interactions
with target GUI elements in this state. For increased rigor,
CAT generates length 3 event sequences, rather than a single

Fig. 4: New Project screen in the BeeCount App

event, to interact with the target GUI element. These steps in
input generation are discussed in more detail below.

a) Check for the target state: CAT monitors the states
entered during GUI exploration, checking if each new state
contains a target GUI element identified in Step 3. Once the
target state is entered it moves to the next step of generating
event sequences that prioritises interactions with the target
elements.

b) Generating event sequences: For thorough testing of
the target element, it would be desirable to interact with it in
different contexts, where a context is defined by the sequence
of events leading to it. To balance rigor and feasibility,
Memon et al. [25] use length-3 event sequences in their GUI
testing work. Inspired by this, CAT generates length-3 event
sequences for interacting with the target element. CAT is the
first Android testing tool to consider permutation of events
leading to a GUI element interaction.

We illustrate length-3 event sequences generated by CAT
for the New Project screen in the BeeCount App, shown
in Figure 4. Change impact analysis in Step 3 marks the
SAVE PROJECT as the target GUI element impacted by
changes. CAT builds length-3 event sequences that click
the SAVE PROJECT option at least once in the sequence.
Example sequence generated by CAT is click ADD COUNT
– REMOVE COUNT – SAVE PROJECT. Sequences like this
enable checking the behaviour of SAVE PROJECT using
different combinations of prior events.

It is worth noting that some generated events can cause the
app to leave the target state. When this happens, CAT uses the
recorded sequence of input events to re-enter the target state.

E. Step 5: Input Execution
Event sequences generated by CAT can be executed on the

Android emulator and real devices. For some event sequences,
execution of an event may leave the target state, as mentioned
earlier. The remaining events in the sequence can only be
executed when the App goes back to the target state. To enable
this, CAT gives unique IDs to events and event sequences and
marks the execution status of each sequence. When a sequence
has remaining events to be performed but the emulator leaves
the target state, the paused events are added to a queue. CAT
then uses a pre-recorded event sequence to go back to the
target state and execute remaining events in the queue.

VI. EXPERIMENT

We evaluate feasibility and effectiveness of CAT in
generating GUI events that exercise target GUI elements. We
use the following Apps in our evaluation,
Open source - We use 21 Android applications from the
F-Droid App market 2 that has a catalogue of free and
open source Android applications. We start with open source
projects that allow us to check the code diff and commit
comments to detect and mark code changes which are then
input to CAT. We selected top rated apps in F-Droid with a
well documented commit history across multiple versions.
Table I lists the names, versions and change information
for the Android Apps used in our experiment. For each of
the open source App versions, we manually collect changes
in the App by reading commit comments for the APK file
release. A JSON file with signatures of changed functions is
then input to CAT for change impact analysis.
Commercial - We use two popular commercial apps, TikTok
and Huoshan, #22 and 23 in Table I (in bold), used widely
for sharing videos and social networking. It is worth noting
that we only had access to the APK files for these two apps.
Information on changes in the App versions were provided
by developers at Bytedance Co. as we did not have access to
the source code. According to the developers, changes in the
TikTok and Huoshan versions affect over 1.5K lines of
code in each.

We investigate the following research questions:
Q1. Change Impact Analysis: Is CAT able to perform

change impact analysis from changed functions in code
to GUI elements?
To answer this question, we use CAT to first build
the combined GUI-function map that contains both the
function graph and GUI-function mapping for all Apps
in our dataset. We then traverse the combined map
from the changed functions to GUI level to identify
target elements. We manually verify if the GUI elements
identified are correct and complete by going through the
source code for each subject App. For the commercial
Apps, the developers verified the GUI elements identified
by CAT.

Q2. Test Input Generation for Changes: Can CAT gener-
ate GUI events to exercise target GUI elements faster and
more rigorously than popular testing tools – DroidBot
(DB), DroidMate-2 (DM)?
For each open source Android application, we run CAT,
DB, DM to generate 1000 test inputs, where each test
input is a GUI event3. We generate 2000 test inputs for
each of the commercial Apps, TikTok and Huoshan,
as they are larger and more complex. TikTok and
Huoshan are 101 and 51 MB in size, respectively,
while all the open source Apps are less than 20 MB.
We compare how quickly the tools start interacting with
the target GUI element. We measure rigour in exercising

2https://f-droid.org/
3We fix number of events to be in line with DB and DM command line

interface support.

target GUI elements as number of generated events that
interact with the target elements.

Q3. Bug Finding: Is CAT able to detect previously unde-
tected bugs in our App dataset? In this question, we
assess if CAT is able to identify previously undetected
bugs in our dataset of 23 Android Apps. We compare
CAT against DB and DM in this assessment.

Selected Tools. We select test input generation tools DB and
DM for our comparison since these were reported in the
literature as being easy-to-use and providing high function
coverage. Monkey [18], a popular random testing tool, and
Ape [22] are not used in our comparison as they only report
screen coordinates of GUI interactions, and do not provide
details of the interacted GUI element. Mapping the coordinate
information to target GUI elements is not trivial, making
comparison with our tool difficult.

We did, however, request developers of TikTok and
Huoshan to compare effectiveness of CAT against their in-
house GUI exploration tool which is similar to Ape in its
approach. The in-house tool does not gather information on
interacted GUI elements, making direct comparison with CAT
difficult. We did not have access to their in-house tool and
therefore report developer observations on performance of
CAT versus their in-house tool, where possible, in our results.

Our experiments for open source Apps are performed on
an Android emulator running on Mac OS 10.15.6 with 16
GB memory and 2.6 GHz Quad-Core Intel Core i7 processor.
The virtual device in the emulator is Google Pixel 2 with
Android API 27. The two commercial Apps require more
runtime memory, so for these we run the experiments on a
device rather than an Android emulator. We use a Huawei
P20 Pro device running Android 10. The dataset of 23 apps
and scripts needed to replicate the experiments are available
at https://github.com/CATAndroidTesting/CAT.

VII. RESULTS

We present results from our experiment in the context of
the research questions in Section VI.

A. Q1. Change Impact Analysis
CAT is able to analyse the impact of changes to GUI

elements automatically for all the subject Apps. Change
impact analysis could statically determine target GUI
elements affected for 20 of the 23 Apps, which include the
two commercial ones. The remaining three Apps, (Tricky
Tripper, Suntimes and Hibi), allocate dynamic GUI
elements that required CAT to perform runtime analysis to
determine the target GUI elements (described in Section V-C).
CAT is able to complete change impact analysis for all the
open source Apps within 30 seconds and the two commercial
Apps within 2 minutes. Changes in our dataset of Android
Apps took different forms. We briefly discuss change impact
analysis performed by CAT for these different change types.

1. New GUI element added. This is the most straight-forward
scenario as the information on affected GUI elements is readily
available. CAT locates the new GUI element in the layout
XML file, marks the GUI element as target element. It then
locates the Activity associated with the layout of the target

TABLE I: Description of subject Apps

App Name Version Change Info
1 World Weather 1.2.5 Behaviour of setting personal API key
2 Amaze File Manager 3.4.3 Implementation of compressing files and folders
3 BeeCount 2.4.6 Function for saving projects
4 Diary 1.7.0 Behaviour of quitting an opened entry input window
5 Omni Notes 6.0.5 Behaviour of discarding modified notes
6 OpenTasks 1.2.2 Implementation of saving new projects
7 Simple Draw 6.1.0 Implementation of printing the picture
8 Simple File Maganer 6.7.3 Callback function for the creating shortcut button
9 Simple Solitare 3.13 Callback function for a checkbox in the settings window
10 WiFiAnalyzer 3.0.1 The About window is changed
11 Hibi 1.4.0 The Settings window is changed
12 Geological Timescale 0.4.1 Behaviour of changing App language is modified
13 DroidShows 7.11.1 Function for sorting list items
14 Suntimes 0.12.9 Callback function for the confirm button in the dialog window
15 Word Scribe 1.6.2 Callback function for the View Changelog button
16 Nani 0.3.0 Callback function for the Help button
17 Fate Sheets 1.2 Implementation of the function for sort list items
18 Lift 0.2 Callback function for saving and setting the fitness program
19 Currency 1.33 Callback function for the About button in the menu
20 Tricky Tripper 1.6.2 Implementation of the function for importing new projects
21 Open Money Box 3.4.1 Behaviour of changing App language
22 TikTok 14.03 The callback function for the Back button in the chat windows
23 Huoshan 10.07 The callback function for the badge widget in the living streaming window

GUI element, and marks it as target Activity. This scenario
appears in 4 subject Apps namely Simple Draw, World
Scribe, Fate Sheets and Nani.
2. Modification to existing Activity. The target GUI
element in this case is the one that is able to enter
the modified Activity. GUI elements implemented to
render another Activity may be statically or dynam-
ically allocated. 10 Apps in our dataset had this type
of change, with 7 of them implementing static GUI ele-
ments to render the modified Activity, and the remain-
ing 3 (Tricky Tripper, Suntimes and Hibi) with
dynamically allocated GUI elements. CAT traces changes
in the Activity source code to static target GUI ele-
ments for 7 Apps (Currency, Geological Times, Wifi
Analyzer, Simple Solitare, Diary, BeeCount and
World Weather). Dynamic target elements in the other 3
Apps are identified during depth-first App exploration.
3. Changes to Java functions. Starting from each changed
function, CAT traverses the combined GUI-function map to re-
trieve the GUI element(s) and associated state and Activity
impacted by the change. There were 9 Apps in our dataset with
changes to functions and CAT was able to retrieve change
affected GUI elements for all 9 Apps. Both commercial Apps
in our experiment fall into this category. According to the
developers, changes were made in the source code of callback
functions that are linked to GUI elements. They confirmed that
CAT correctly identifies the target GUI elements.

B. Q2. Test Input Generation for Changes

We assess and compare effectiveness of the tools in ex-
ercising the target GUI elements with respect to (1) how
quickly they start interaction, and (2) number of target GUI
element interactions. To account for non-determinism in the
Android environment, we ran each tool 10 times for each App,
generating 1000 GUI events for open source and 2000 for
commercial Apps each time. Numbers reported in this section
are averaged over the 10 runs.

1) Number of events to first target element interaction:
Figure 5 shows the average number of events each tool used
before it first interacted with the target GUI element for all
23 Apps. Smaller number of events is better, as it indicates
the tool starts interacting with the target element faster. Failure
labels on bars indicate the associated tool did not interact with
any target GUI element.

a) Open source Apps: CAT is the fastest to start inter-
acting with the target element, only needing 83 events, on
average, versus 286 for DB and 258 for DM. For 18 of these
21 Apps in Figure 5, CAT needs fewer events than DB or
DM to start target element interaction. This is because when
target state is entered, CAT prioritises interaction with target
elements unlike the other two tools. On average, DM uses
159 events to enter the target state and a further 99 elements
to interact with the target GUI element. In contrast, depth-
first exploration used by DB and CAT enables them to reach
deeper screens faster. We remind the reader that CAT diverges
from DB only after reaching the target state. Both tools use 81
events, on average, to reach target state. DB uses an additional
205 events to start interacting with the target element. On the
other hand, CAT only needs 2 additional events to start target
element interaction.

DM outperforms DB and CAT on two Apps: BeeCount
(App #3) and Trick Tripper (App #20). For BeeCount,
shown in Figure 4, the target GUI element is the Save button
in the New Project Activity. Entering this Activity
requires clicking the New Project button in the start screen.
DM clicks this button earlier than DB and CAT (they click on a
different button to first go into Settings, perform further events
and then return to click the New Project Button). Similarly, For
Trick Tripper, the target state containing the target GUI
element can be entered after the first screen. DM clicks the
button leading to the target state right away while DB and CAT
explore many other events and Activities before entering
the target state.

For Simple File Manager (App #8), all 3 tools failed

Failure

Failure

54

124

Failure

70

386

561

442

57

108

132

5

131

18

64

80

36

58

5

7

0 500 1000

1

2

3

4

5

6

7

Ap
p

#

Failure

79

858

207

Failure

Failure

308

Failure

Failure

667

848

44

231

378

Failure

38

32

124

5

37

46

0 500 1000

8

9

10

11

12

13

14

Fig. 5: Number of events taken to reach the first target GUI element interaction with DM, DB and CAT.

Fig. 6: Number of target GUI element interactions achieved by DM, DB and CAT

to interact with the target GUI element within 1000 events.
Target GUI element for this App is a button for creating
shortcuts. The state containing this button is not reached by all
3 tools as they get stuck on a screen for creating passwords,
shown in Figure 7. To be able to leave this state, the tools
had to provide input events that were exactly the same for
initial and confirmation password. All three tools failed to
achieve this within 1000 inputs. To avoid getting stuck in
such non-target states, CAT provides the developer with an
interface to specify an event sequence that leads it directly to
the target state. When such a sequence is provided, CAT is

able to interact with the target GUI element 90 times, with
the first interaction happening after 17 events.

b) Commercial Apps: For TikTok and Huoshan,
App# 22 and 23 in Figure 5, CAT and DB use similar number
of events for first target element interaction – approximately
800 events for TikTok, 884 (CAT) - 1032 (DB) events for
Huoshan. The commercial Apps, owing to their size and
complexity, have a wider and deeper combined GUI-function
map requiring a larger number of events to reach the target
state. For Huoshan, DB uses 150 events more than CAT
because after reaching the target state, DB does not interact

with the target element right away but instead randomly picks
other GUI elements to interact with first. CAT, on the other
hand, interacts with the target element immediately after the
target state is reached.

DM completely fails to test the two commercial Apps.
Log information indicates that it cannot retrieve GUI models
when testing on a real device. Testing using the emulator was
unsuccessful as the commercial Apps exceeded the memory
capacity in the emulator.

Fig. 7: Setting password in the Simple File Manager App

2) Number of target element interactions: Figure 6 gives
the frequency of interactions with the target GUI element.

a) Open source Apps: We find DM and DB have limited
number of target element interactions. DM performs 3 target
element interactions on average for each App, and DB per-
forms 5 interactions out of the generated 1000 events. CAT,
on the other hand, performs 74 target element interactions that
explore different event orders in length-3 sequences. This is
because when CAT enters the target state, it stops exploring
more states and provides a more rigorous event generation
for target GUI elements with a higher likelihood of triggering
change-related errors. As a result, CAT clearly outperforms
DB and DM in number of target element interactions for all
21 open source Apps (as seen in Figure 6).

b) Commercial Apps: For TikTok, number of target
GUI element interactions is 2 for DB versus 428 for CAT.
For Huoshan, DB interacts 3 times versus 384 times with
CAT. As DM has problems retrieving GUI models on real
devices, it does not exercise target GUI elements in both the
commercial Apps.

DB has dramatically fewer target element interactions than
CAT because once the target activity is reached, DB does not
prioritise interactions with the target GUI element. DB instead
randomly picks one of the unvisited GUI elements on screen or
navigates to the previous activity. TikTok and Huoshan, in
comparison to open source Apps, have considerably more GUI
elements in the target activity which reduces the likelihood of
DB’s random choice being the target GUI element.

In contrast, when CAT enters the target activity, it focuses
solely on interacting with target GUI elements. Sometimes
the target GUI element interaction may lead CAT to another
activity, in that case CAT will navigate back to the target
activity using the previously recorded event sequence. We also
observed that CAT reliably interacted with the target GUI
elements across multiple runs, with more than 300 interactions
in each run.

In summary, we find CAT is able to exercise the target GUI
elements more rigorously and reliably than DB and DM across
both open source and commercial Apps.

c) Developer Observation: ByteDance’s in-house testing
tool does not provide information on GUI elements exercised.
So in order to compare with CAT, developers examined App
execution with input sequences from the different tools and
found CAT interacted with the target GUI elements sooner
and more frequently than their in-house tool. They also found
CAT was more reliable than their in-house tool in time to and
frequency of interactions over multiple runs.

ByteDance developers also found it easy to setup CAT and
follow the command line interface of CAT to generate change
impact results and run tests. After test execution, they can
easily read experimental results from the CAT output.

d) Overhead: DM has the highest overhead in test input
generation and execution. Average time taken by DM for each
App, to generate and execute 1000 events, is 35 minutes while
DB and CAT take 18 minutes. CAT introduces a negligible
additional overhead of 5 seconds over DB. Higher overhead
observed with DM is because DM consumes approximately 1
second more than DB or CAT after every event execution to
extract the state model and generate the next event. The extra
time accumulated across 1000 events results in significant
difference.

For the commercial Apps, overhead incurred by DB and
CAT is higher - approximately 0.5 seconds more for each
GUI element interaction as they are executed on a real device
and connection using USB debugging introduces some latency.
CAT and DB took 1.5 hours to generate and execute 2000 GUI
events for both commercial Apps.

C. Q3. Bug Findings

1) Open Source Apps: CAT uncovered change-related bugs
in 2 of the 21 open source Apps – World Weather and
BeeCount. DM did not reveal bugs in any of the Apps, while
DB revealed a bug in the World Weather App but not
BeeCount. Both World Weather and BeeCount App
versions have changes at the source code level that impact
GUI elements.

Latest version of World Weather changes the function
to query weather information using a public API. CAT iden-
tifies the button for changing API key in the Settings
Activity as the target GUI element. CAT’s first interaction
with the target GUI element results in a crash and the App
stops execution. Both DB and CAT are able to crash the App
by clicking the button for changing API key. However, once
the App is restarted, DB does not produce additional events to
interact with this target element as it proceeds to interact with
other unvisited elements. CAT, on the other hand, continues
to generate and execute events related to this button as it
prioritises target element interaction. Interestingly, clicking
this button only crashes the first time, further clicks do not
result in crashes. This information about first-time only crash
is useful for debugging and can only be provided by CAT as
it interacts with the target element multiple times. The crash
was reported to the App developer and is awaiting a fix at the
time of writing this paper.

BeeCount App version in our dataset updates the listener
function for Save button in the New Project activity. CAT
identifies the New Project activity as the target state and
the Save button as the target GUI element. The following
event sequence generated by CAT – Edit Text, Click
Menu, Click Save – reveals a bug in the App. Clicking the
Menu button after editing text in the New Project activity
loses the edited text. As a result, clicking the Save button does
not perform the expected action of saving the edited text. We
manually inspect executions of the event sequences to detect
unexpected behaviour. The App is expected to save the text
when leaving the New Project Activity so that when the
user later returns to this Activity the previously entered text
is retained. This bug in the BeeCount App is not revealed
by DM and DB. Both DM and DB interact with the target
Save button. However, they are unable to generate the event
sequence that triggers this bug - Clicking Menu button after
editing text, followed by clicking Save. Order of events is
important for triggering this bug. CAT’s focus on Length 3
event sequences interacting with the target element allows it
to trigger bugs that are sensitive to event orders.

2) Commercial Apps: We found no bugs in both the com-
mercial Apps. This is not surprising as we use release versions
of TikTok and Huoshan that were extensively tested before
their release. To assess the effectiveness of CAT and other tools
in detecting change-related bugs in a commercial App, the
App developers manually seeded a runtime exception within
change affected source code in TikTok. The seeded bug is
expected to crash the App when executed. The App developers
generated input GUI events using their in-house testing tool,
CAT and DB for this faulty TikTok version. It is worth noting
that we were not involved in seeding the bug or running the
input generation tools on the faulty version.

a) Developer Observation: The developers found CAT
reliably detected the seeded fault by causing TikTok to crash
within 26 minutes. Repeating the experiment several times did
not change this result. DB was unable to trigger a crash while
their in-house tool took approximately 6 hours to trigger the
seeded fault.

Developer-run experiments over the commercial Apps have
led the developers to acknowledge that CAT is more effective
in testing change-affected code in the two commercial Apps
than their in-house testing tool with regards to number of target
element interactions, time to first target element interaction and
revealing a seeded bug of their own choosing. They also found
CAT easy to use and commented that it worked seamlessly
with their Apps without requiring any modifications.

D. Threats to Validity

A potential threat to internal validity is bugs in CAT’s imple-
mentation. To mitigate this threat, we conducted careful code
reviews and extensive testing. Further, the implementations are
publicly available for other researchers and potential users to
check the validity of our results.

Regarding the soundness of our approach, the change impact
analysis results were checked manually by inspecting the
source code of the subject Apps to check the correctness.
We conducted several rounds of the manual inspection by

different developers to mitigate the risk of manual mistakes
or omissions.

A potential threat to the external validity is related to the fact
that the set of Android Apps we have considered in this study
may not be an accurate representation of the App under test.
We attempt to reduce the selection bias by using a dataset of
21 open source Apps from different categories with a variety
of Android features, and 2 widely used commercial Apps.

A threat to construct validity is caused by restricting the
number of GUI events generated by all 3 tools to 1000 for
open source Apps and 2000 for the two commercial Apps.
Restriction to 1000 input events is used by DM and DB in
their default settings and we used the same for CAT. We don’t
believe changing the number of input events will affect the
relative performance of the tools as we expect all 3 tools to
be uniformly impacted. A final threat to validity is the limited
number of tools used in comparison. We used DB and DM
as they are popular, well-maintained and easy to use. We
attempted to include Monkey and Ape tools in our experiment
but found they were difficult to compare with owing to the
lack of information on GUI elements exercised. This threat is
mitigated to some extent by comparing with ByteDance’s in-
house GUI testing tool that uses an approach similar to Ape,
according to the developers.

VIII. CONCLUSION

We presented the CAT framework for GUI test input gen-
eration targeting Android App updates. CAT supports change
impact analysis to identify GUI elements affected by updates.
It then generates GUI event sequences for interacting with
these target GUI elements.

We empirically evaluated CAT’s performance by comparing
it to DB and DM over 21 open source and 2 popular industrial
Android Apps. We made the following observations in our
experiment.

1) CAT is able to trace changes made at the source code
level to affected GUI elements automatically.

2) For target states containing target GUI elements, CAT is
able to generate length-3 event sequences.

3) CAT interacts with target elements sooner than DB and
DM, requiring 83 events on average, versus 286 for DB
and 258 for DM.

4) CAT interacts with target GUI elements more frequently
than DB and DM – average of 74 interactions for CAT,
5 for DB and 3 for DM with open source Apps and 406,
3 and 0 interactions, respectively, for commercial Apps.

5) Change-related bugs are revealed by CAT in two Apps.
Order of input events was crucial in revealing the bug
on one of these Apps. Only CAT was able to reveal this
event order sensitive bug owing to the length 3 event
sequence used to interact with the target element. CAT
was also able to reveal a developer seeded bug in one of
the commercial Apps, TikTok, faster than the company’s
in-house tool. DB and DM failed to reveal this bug.

In sum, CAT outperforms DB and DM in testing App updates
on all 21 open source Apps and the 2 commercial Apps. Addi-
tionally, for the commercial Apps, developers confirmed that
CAT does better than their in-house testing tool in revealing
seeded bugs and interacting with the target GUI elements.

REFERENCES

[1] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet?” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2015, pp. 429–440.

[2] N. P. Borges, J. Hotzkow, and A. Zeller, “Droidmate-2: a platform
for android test generation,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2018,
pp. 916–919.

[3] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[4] Y.-M. Baek and D.-H. Bae, “Automated model-based android gui
testing using multi-level gui comparison criteria,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 238–249.

[5] T. Takala, M. Katara, and J. Harty, “Experiences of system-level model-
based gui testing of an android application,” in 2011 Fourth IEEE In-
ternational Conference on Software Testing, Verification and Validation.
IEEE, 2011, pp. 377–386.

[6] T. Su, “Fsmdroid: guided gui testing of android apps,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2016, pp. 689–691.

[7] O. Riganelli, S. P. Mottadelli, C. Rota, D. Micucci, and L. Mariani, “Data
loss detector: automatically revealing data loss bugs in android apps,”
in Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 141–152.

[8] W. Choi, K. Sen, G. Necul, and W. Wang, “Detreduce: minimizing
android gui test suites for regression testing,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 2018,
pp. 445–455.

[9] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in gui testing of android applications,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). IEEE,
2016, pp. 559–570.

[10] W. Song, X. Qian, and J. Huang, “Ehbdroid: Beyond gui testing for an-
droid applications,” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2017, pp. 27–37.

[11] A. Sharma and R. Nasre, “Qadroid: regression event selection for
android applications,” in Proceedings of the 28th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, 2019, pp. 66–77.

[12] B. Jiang, Y. Wu, Y. Zhang, Z. Zhang, and W.-K. Chan, “Retestdroid:
towards safer regression test selection for android application,” in 2018
IEEE 42nd annual computer software and applications conference
(COMPSAC), vol. 1. IEEE, 2018, pp. 235–244.

[13] Q. C. D. Do, G. Yang, M. Che, D. Hui, and J. Ridgeway, “Redroid: A
regression test selection approach for android applications.” in SEKE,
2016, pp. 486–491.

[14] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li,
“Atom: Automatic maintenance of gui test scripts for evolving mobile
applications,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 2017, pp. 161–171.

[15] Q. Do, G. Yang, M. Che, D. Hui, and J. Ridgeway, “Regression test
selection for android applications,” in Proceedings of the International
Conference on Mobile Software Engineering and Systems, 2016, pp.
27–28.

[16] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 23–26.

[17] R. Sharma, “Quantitative analysis of automation and manual testing,”
International journal of engineering and innovative technology, vol. 4,
no. 1, 2014.

[18] G. Developers, “Ui/application exerciser monkey,” https://developer.
android.com/studio/test/monkey, accessed: 2020-08-20.

[19] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013, pp. 224–234.

[20] T. Wetzlmaier and R. Ramler, “Hybrid monkey testing: enhancing
automated gui tests with random test generation,” in Proceedings of
the 8th ACM SIGSOFT International Workshop on Automated Software
Testing, 2017, pp. 5–10.

[21] K. Jamrozik and A. Zeller, “Droidmate: a robust and extensible test
generator for android,” in Proceedings of the International Conference
on Mobile Software Engineering and Systems, 2016, pp. 293–294.

[22] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 269–280.

[23] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[24] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[25] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria for
gui testing,” in Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international symposium
on Foundations of software engineering, 2001, pp. 256–267.

