
Hawkeye: Change-targeted Testing for Android Apps based on
Deep Reinforcement Learning

Chao Peng
pengchao.x@bytedance.com

ByteDance
Beijing, China

Zhengwei Lv
lvzhengwei.m@bytedance.com

ByteDance
Beijing, China

Jiarong Fu
fujiarong@bytedance.com

ByteDance
Beijing, China

Jiayuan Liang
liangjiayuan.522@bytedance.com

ByteDance
Beijing, China

Zhao Zhang
zhangzhao.a@bytedance.com

ByteDance
Beijing, China

Ajitha Rajan
arajan@ed.ac.uk

University of Edinburgh
Edinburgh, United Kingdom

Ping Yang
yangping.cser@bytedance.com

ByteDance
Beijing, China

ABSTRACT

Android Apps are frequently updated to keep up with changing
user, hardware, and business demands. Ensuring the correctness of
App updates through extensive testing is crucial to avoid potential
bugs reaching the end user. Existing Android testing tools generate
GUI events that focus on improving the test coverage of the entire
App rather than prioritising updates and impacted elements. Re-
cent research has proposed change-focused testing but relies on
random exploration to exercise change-impacted GUI elements that
is ineffective and slow for large complex Apps with a huge input
exploration space. At ByteDance, our established model-based GUI
testing tool, Fastbot2, has been in successful deployment for nearly
three years. Fastbot2 leverages event-activity transition models
derived from past explorations to achieve enhanced test coverage
efficiently. A pivotal insight we gained is that the knowledge of
event-activity transitions is equally valuable in effectively targeting
changes introduced by updates. This insight propelled our proposal
for directed testing of updates with Hawkeye. Hawkeye excels
in prioritizing GUI actions associated with code changes through
deep reinforcement learning from historical exploration data.

In our empirical evaluation, we rigorously compared Hawkeye
with state-of-the-art tools like Fastbot2 and ARES on 10 popular
open-source Apps and a commercial App. The results showcased
that Hawkeye consistently outperforms Fastbot2 and ARES in
generating GUI event sequences that effectively target changed
functions, both in open-source and commercial App contexts.

In real-world industrial deployment, Hawkeye is seamlessly in-
tegrated into our development pipeline, performing smoke testing
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for merge requests in a complex commercial App. The positive feed-
back received from our App development teams further affirmed
Hawkeye’s ability in testing App updates effectively.
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1 INTRODUCTION

The rapid growth of mobile technology has led to an unprecedented
increase in the development and usage of mobile Apps, particu-
larly in the Android ecosystem. These Apps are frequently updated
(typically weekly) to keep up with changing user, hardware and
business demands. To ensure security and correctness, updates in
Apps need to be tested thoroughly to ensure changes and existing
functionality work as expected.

The conventional approach to testing Android Apps involves
human interaction, which can be time-consuming and error-prone
when identifying unexpected behaviors. Automated mobile App
testing has been extensively explored in the literature [2, 3, 5, 6, 21,
26, 30–33], focusing primarily on testing a single version of a mobile
App and often excluding App updates. Regression test selection
techniques have been developed to choose a subset of tests from
an existing test suite that exercises updates [5, 9, 10, 14, 15, 28].
QADdroid [28] is a notable tool that considers changes and their
impact at the GUI level when selecting regression tests. However,
regression test selection techniques, including QADroid, focus on
existing tests and do not generate new tests to cover the changes.

To the best of our knowledge, CAT [25] and ATUA [22] are the
only tools in the literature that generate GUI events to exercise
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changes. However, CAT relies on random exploration before reach-
ing the change-impacted GUI element. If the App under test is
complex, the random execution can take hours, and as complexity
increases, it may take an impractical amount of time before the tar-
get GUI element is reached, diminishing its effectiveness in practice.
On the other hand, ATUA relies on static analysis to construct activ-
ity transition graphs and perform change impact analysis. However,
the core analysis engine, Gator [35], presents scalability challenges
with our commercial Apps. Specifically, it fails when analyzing
Apps exceeding 20MB in size, making it ineffective for our context.

Fastbot2 [19], an automated model-based GUI testing technique,
has been actively used at ByteDance for three years. It leverages
model-based testing (MBT) to store and apply prior knowledge,
effectively steering GUI testing. A pivotal element of the model
reuse approach in Fastbot2 is a probabilistic model designed to
remember event-activity transitions from earlier testing iterations.
This stored knowledge serves as a guide during current testing,
ensuring efficient coverage of critical App functionalities by select-
ing events accordingly. Going beyond one-step guidance, Fastbot2
enhances this model with a deep reinforcement learning algorithm.
This augmentation empowers the model to offer multi-step guid-
ance, enabling traversal into deeper activities that necessitate a
sequence of events for effective testing coverage.

While Fastbot2 stands out as the only model-reuse approach in
the literature, it does not specifically address changes introduced
in new versions nor prioritize GUI events that are more likely to
trigger functions impacted by these changes. In this paper, we
introduce Hawkeye, a novel approach that concentrates on gen-
erating GUI events with the goal of executing targeted changes.
This is achieved through a reinforcement learning-based strategy.
Hawkeye is triggered when a merge request is submitted. It first
analyses the codebase and the code commit to identify changed
functions and initiates a GUI exploration task to perform change-
targeted testing. To quickly locate and exercise changed functions,
a reinforcement learning model is loaded from the historical explo-
ration data to infer GUI events that are most likely to execute these
functions. The task is terminated once all changed functions are
covered or the execution times out. Additionally, Hawkeye uses
a client-server implementation with the ability to test the same
App on multiple devices simultaneously while sharing the deep
reinforcement learning agent.

We investigate the effectiveness and practicality of Hawkeye in
testing App updates using a diverse dataset of 10 open-source An-
droid Apps from the F-Droid App market. Additionally, we include
a widely-used commercial enterprise collaboration App, Feishu,
developed by ByteDance, to assess practicality of the technique on
a large-scale complex App. Finally, we compare Hawkeye’s perfor-
mance against two reinforcement learning-based GUI testing tools
for Android, namely ARES [27] and Fastbot2 [19].

Our experimental findings strongly indicate that Hawkeye out-
performs both Fastbot2 andARES bymore effectively and frequently
exercising modified functionalities with fewer GUI events. This
highlights the efficiency and reliability of Hawkeye in the context
of testing App updates. Furthermore, when specifically evaluat-
ing Hawkeye’s performance on the commercial App, Feishu, our
results demonstrate its efficiency in testing changes within this
complex application – 85% of the changed functions can be covered

within the initial 5 minutes of the 180-minute testing run. This
signifies Hawkeye’s potential in efficiently testing updates within
real-world Apps. This finding is in line with the experience of our
product teams who found after a one year review that Hawkeye is
able to increase change-related statement coverage by 11.3% and
increase the number of uncovered crashes three times.
In summary, the main contributions in this paper are:

(1) A novel deep reinforcement learning-based GUI testing tool
that prioritises GUI events related to changed functions.

(2) An optimised client-server implementation that allows test-
ing onmultiple devices while sharing the deep reinforcement
learning agent.

(3) Empirical evaluation against state-of-the-art reinforcement
learning tools using 10 open-source and 1 commercial App.

(4) Implications and lesson learned from our development and
deployment experience.

2 BACKGROUND

Before we present our approach in detail, we briefly introduce basic
concepts in Android App development and testing. We also discuss
reinforcement learning and how it can be used for test generation.

2.1 Android Apps

Android Apps are typically developed using Java or Kotlin, which
are compiled and converted to Dalvik bytecode. To enhance perfor-
mance, native code can also be incorporated. The Dalvik bytecode,
native code (if available), and any data or resource files are packed
into an Android package (APK). The APK file is the sole requirement
for installing the App on Android devices. In order to construct the
APK file, an Android project relies on the following components:
(i) source code files containing App’s classes and functions,
(ii) layout-XML files outlining the GUI layout for all activities, and
(iii) the Android manifest, which is located in the App’s root folder

as AndroidManifest.xml and provides crucial details about the
App, such as the package name (used to find the source code),
component lists, required user permissions, utilized hardware
and software features, and necessary API libraries.

2.2 Android GUI and Testing

The window displayed in the screen is referred to as an Activity,
encompassing a range of GUI elements (also known as Views or
Widgets) such as buttons and text fields. By incorporating suitable
callbacks for each life-cycle stage (i.e., created, paused, resumed,
and destroyed), developers can manage the behavior of individual
Activities. These Activities must be initially specified in the An-
droidManifest.xml file and are executed as Java classes within the
source code directory.

GUI elements serve as the fundamental building blocks for
user interaction, such as textboxes, buttons, and containers for
other GUI elements. GUI elements play a crucial role in event
handling, which may include button clicks, text editing, touch
events, and more. To react to a specific event type, it needs to
register a suitable event listener and implement the associated call-
back method (invoked by the Android Framework when the GUI
element is activated through user interaction). For instance, to
enable a button to respond to a click event, it must register the
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View.onClickListener event listener and implement the relevant
onClick() callback method. Upon detecting a button click event,
the Android framework will call the onClick() method for that
specific GUI element.

An event sequence refers to an organized series of input events.
In this paper, the term state denotes the GUI state, which encom-
passes the current screen’s GUI information and all its elements.
Since Android Apps are event-driven, inputs typically take the
form of events. Manually writing or recording input events can be
laborious and time-intensive [29]. Consequently, automated test
input generation for Android Apps is an active research area. The
following section discusses existing Android testing techniques.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a sub-domain of machine learning
that focuses on training agents to make intelligent decisions by
interacting with an environment. In RL, an agent learns to select
actions within a given context to maximize a cumulative reward
signal. The underlying idea is that the agent learns an optimal
policy through trial-and-error, wherein it continuously updates
its knowledge based on the observations and feedback obtained
from the environment. The agent’s learning process is driven by
balancing the exploration of the environment and the exploitation
of the acquired knowledge [16]. Reinforcement learning has ex-
hibited impressive results in a wide variety of domains, ranging
from robotics and game-playing to recommendation systems and
self-driving cars. In the context of automated Android App testing,
reinforcement learning can be leveraged as a means to efficiently
explore the state-space by formulating testing as a decision-making
problem.

3 RELATEDWORK

In this Section, we provide an overview of current research on
Android GUI test generation, which is divided into random, model-
driven and learning-based testing approaches. Additionally, we
discuss related studies that focus on choosing regression tests or
generating new tests based on App updates.

3.1 Random Android GUI Testing

Android Monkey [8] is a well-known random testing tool that
analyses the GUI and arbitrarily selects events to be executed in the
current state until the number of executed events surpasses the user-
defined limit. DynoDroid [20] employs heuristics for input event
selection instead of complete randomness. However, DynoDroid
has not been updated for several years and only supports Android
version 2.3.5 (with Android 13 being the latest version). Wetzlmaier
et al. [34] enhance existing test inputs by incorporating random
test inputs, providing users with more control than Monkey. None
of the current random testing tools concentrate on App updates.

3.2 Model-based Android Testing

DroidBot [17] and DroidMate [3, 13] emphasise generating test in-
puts based on GUI models. DroidMate directs test input generation
in real-time using the GUI model. DroidBot consults the GUI model
of the target App, calculates, and performs possible events within

this model. DroidBot also offers a user-friendly interface for App
exploration.

In contrast to static GUI model-based test generation, Ape [12]
dynamically optimises the GUI model by taking advantage of run-
time information during testing. Ape employs a decision tree-based
representation while exploring the App and continuously refines
the GUI model, aiming to maintain an optimal balance between
model size and model accuracy.

3.3 Machine Learning-based Android Testing

Machine learning techniques have been extensively applied in test-
ing Android applications. Some methods [4, 18] use supervised
learning to generate test inputs that achieve high coverage. Borges
et al. [4] suggest a straightforward yet effective approach that can
guide test generation towards UI elements with the highest like-
lihood of being reactive. Humanoid [18] utilizes a deep neural
network to learn about users’ interactions with the Apps being
tested, enabling it to prioritise user-preferred inputs for new UIs.

In addition, many researchers have tried to adopt reinforcement
learning in automatic test input generation. Q-testing [24] is a Q-
learning based approach for automated testing. Q-testing leverages
Q-table as a lightweight model while exploring unfamiliar function-
alities with a curiosity-driven strategy. ARES [27] and ATAC [11]
are both testing tools that utilise deep reinforcement learning algo-
rithms. ARES employs algorithms such as DDPG, SAC and TD3 as
agents to learn both the state similarity and action-value functions,
while ATAC leverages the Advantage Actor-Critic algorithm to
generate test cases for Android GUI testing. DeepGUI [7] is a Deep
Q-Network-based testing tool. It can generate diverse test cases by
exploring the App using trial-and-error, with the aim of achieving
code coverage and revealing failures and crashes. All three tools —
ARES, ATAC and DeepGUI — do not consider changes in Android
Apps which is the focus of our approach. We compare performance
against ARES in Section 6. We were unable to evaluate against
ATAC as it is not publicly available. We attempted to use DeepGUI
in our experiments but the test generation was extremely time
consuming making it impractical to use.

3.4 Regression Test Selection and Generation

Numerous studies have investigated the selection of regression
tests based on App updates and their effects. However, Hawkeye’s
focus is different - it aims at generating inputs to exercise changed
functions unlike existing regression test selection contributions
that focus on test selection.

Redroid [9, 10] and ReTestDroid [14] are regression test selection
techniques that compare Java source files from the original and
updated App versions to identify changes and calculate change
impact at the source code level. The tools select regression tests
that exercise change-impacted code. ReTestDroid handles more
Java features than Redroid, such as fragments, native code, and
asynchronous tasks. Both tools perform change impact analysis at
the source code level, not considering GUI elements, and are used
for test selection rather than generation.

QADroid [28] and ATOM [15] also carry out test selection for
regression versions of Apps. QADroid analyses the impact of App
updates on code and GUI elements. QADroid constructs call graphs
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based on FlowDroid [1] and links events to function calls using
event-function bindings defined in the source code. QADroid does
not support change impact analysis for dynamic GUI elements, as it
does not support Java reflection. ATOM [15] creates an event-flow
graph for each App version, with nodes representing activities and
edges representing events that trigger activity transitions. It then
computes a delta graph using event-flow graphs of the updated and
original App versions. Only events present in the delta graph are
chosen for regression test selection.

CAT [25] conducts change impact analysis at both the source
code and GUI levels, and prioritises change-related GUI events.
However, CAT does not provide a way to localise these GUI events
and relies on purely randomGUI exploration before these events are
available on the screen. More importantly, the static analysis is not
applicable to large Apps. CAT is not applicable to large industrial
Apps that we used in our initial experiment on a devbox with 128
GB memory. As a result, we do not use this tool in our evaluation.

ATUA [22] is a state-of-the-art update-driven App testing tool
that achieves high coverage of the updated code with a minimal
number of test inputs. It employs a model-based approach that com-
bines static and dynamic program analysis to select test inputs that
exercise the updated methods. Similar to CAT, the static analysis
phase employed by ATUA to perform change impact analysis and
widget transition graph construction fail on Apps larger than 20
MB and we have to exclude this tool in our evaluation.

4 OUR APPROACH

In this section, we present Hawkeye based on deep reinforcement
learning model to guide change-targeted GUI exploration. The
workflow of Hawkeye is illustrated in Figure 1. The input toHawk-
eye is the list of changed functions and the instrumented App with
real-time function coverage monitoring and the output is GUI event
sequences to be executed.

Hawkeye includes two major phases for each testing run. The
first phase (with Prefix A in Figure 1) is setup before testing:
A1. The list of changed functions (target functions) is generated

by analyzing the merge request from the codebase. The user
can also provide the list of target functions manually in the
tool configuration file.

A2. Hawkeye instruments the App on the source code level to
enable the compiled APK file to record and report real-time
function coverage. The coverage information is used to train
the reinforcement learning model and determine whether
any of the target functions are covered.

A3. The instrumented App is installed on multiple devices to
perform GUI exploration. During testing, the device continu-
ously sends GUI information to Hawkeye and executes GUI
events that it selected.

A4. The list of target functions is sent to the decision engine to
infer GUI events to be executed.

The second phase (with prefix B in Figure 1) performs guided
GUI exploration.

B1. Hawkeye captures the current GUI screen from the App un-
der test (AUT). Hawkeye interacts with the device using the
Android Debug Bridge, allowing it to query GUI information

and collect executable GUI events present on the current
screen.

B2. Hawkeye selects a GUI event with the highest likelihood of
exercising one of the target functions.

B3. The selected GUI event is executed on the device.
B4. The GUI state change from event execution in B3 is sent to

the decision engine to update the RL model.
Steps B1 to B4 are iteratively executed in a loop until either the

predetermined threshold number of GUI events is reached or the
designated time budget is exhausted. In the rest of this section, we
discuss each step in detail.

4.1 Input Preprocessing

Mapping between GUI actions and source code functions is essen-
tial to train the deep reinforcement learning model. We obtain this
mapping by instrumenting the Apps to monitor functions executed.
Different from the transition graph of events and activities that can
be recorded during testing (Android provides a tool to collect events
and activities during testing), Hawkeye requires instrumentation
to recorded which functions are exercised after an event execu-
tion. We build the instrumentation tool as a Gradle plugin based on
ASM1, a Java bytecode manipulation and analysis framework. Gra-
dle is the default build automation tool used by the official Android
development environment, Android Studio. As a gradle plugin, code
instrumentation can be integrated into existing Android projects
seamlessly by only adding the name of the tool to the plugin list of
the project configuration file.

Listing 1: Example Instrumented Methods

1 void foo ( ) {
2 / / f u n c t i o n ID = 1 ;

3 Hawkeye . logMethod ( 1 ) ;
4 . . .
5 }
6
7 void bar ( ) {
8 / / f u n c t i o n ID = 2 ;

9 Hawkeye . logMethod ( 2 ) ;
10 . . .
11 }

As shown in Listing 1, the code instrumentation inserts a func-
tion call to logMethod at the beginning of all methods. The imple-
mentation of this function sends a socket message toHawkeyewith
the method ID. After code instrumentation, the mapping between
function signature and function ID is stored in the database for
Hawkeye to query. As a result, during testing, after each GUI event
is exercised, Hawkeye is aware of the functions that get triggered.

4.2 RL-based Guided GUI Exploration

We train a deep RL model to select the GUI event that maximises
the likelihood of reaching the target changed functions. The overall
architecture of the deep RL model is shown in Figure 2. It consists
of two modules, DRL Service (the server) and GUI Interaction Layer

(the client) that are described below.

DRL Service. The DRL service is responsible for model training
and Q-value (measure of overall expected reward for a given state
and action) calculation. It comprises the following components:
1https://asm.ow2.io/
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Figure 2: Deep Reinforcement Learning Workflow

• Shared Memory transfers the training data to the replay buffer
of the model trainer.

• Shared Storage stores shared variables across processes.
• Trainer trains the deep reinforcement learning model. It stores
the training data using the replay buffer and continuously sam-
ples to train the model. After each training, it saves model pa-
rameters to the Shared Storage and database.

• Worker component, depicted within the DRL Service module
in Figure 2, comprises of two crucial elements: the Model and
the Encoder. The Model encapsulates the most current trained
model (from the Trainer), retrieved at regular intervals from
the Shared Storage. The Encoder is responsible for translating
raw GUI information into vectors, a format that can be effec-
tively processed and understood by the model. Additionally, the
Worker component provides two key interfaces to the GUI In-
teraction Layer, Add Training Data and Get Q-value. When
Add training data is invoked, the Worker stores encoded GUI
action and associated functions to the Shared Memory. When
Get Q-value is called, the Worker provides the encoded GUI
information to the Model, representing the latest trained version,
which then processes it and generates the inferred GUI action to
be performed. The inferred GUI action is then transferred to the
GUI Interaction Layer (shown as the arrow connecting the two
modules labelled with Q Value) for execution by the agent.

GUI Interaction Layer. The GUI interaction layer is responsible
for device interactions and supports multiple device training and
testing. For each available device, the GUI interaction layer instan-
tiates a corresponding Agent to communicate with it using the
Android Debugging Bridget that provides capabilities including
GUI screen query and event execution, depicted in Figure 2 with
arrows between devices and Agents within the GUI Interaction
Layer. The GUI screen is represented in an XML format where each
node stands for a GUI element with its class (type of the widget),
resource ID (identifier of the GUI element), text, position, etc.

The Agent continuously queries the device screen to get avail-
able GUI elements and sends this GUI information to the Encoder
element within Worker. When a decision is made by the DRL ser-
vice, it executes the inferred GUI event with the highest Q-value.

4.2.1 Model Training. The training phase adopts a centralized
training and distributed execution architecture, with each device
corresponding to a Worker and multiple Workers corresponding to
a Trainer. The specific process is as follows:
i. Each device installs the App under test, randomly selects a func-
tion from the input list of target functions as the target function,
continuously obtains the current screen’s GUI information and
the list of functions covered by the previous action, and sends
them to the corresponding Worker. The Worker parses the avail-
able action list from the current screen and selects the action
generation method using the ϵ − дreedy method [23]. With a
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probability of ϵ , a random action is selected and returned to the
client for execution. With a probability of 1 − ϵ , the local model
is called to obtain the Q-value of each action, and the action
with the highest Q-value is returned to the client for execution.

ii. As the Worker continuously receives states and selects actions,
it stores the test sequence information in the Shared Memory.
The stored content is of the form

< s0,a0, F0, s1,a1, F1, ..., st ,at , Ft , st+1 >

with a maximum sequence length of N, where st is the current
state’s GUI information, including the current screen’s activity
and XML; at is the action executed on the current screen, Ft is
the list of functions that can be covered after executing at in st ,
and st+1 is the next screen after executing at in st .

iii. The Trainer actively monitors and reads the GUI interaction se-
quences from the Shared Memory in real-time and subsequently,
stores it as training data in the Replay Buffer. The training data
takes the form,

(дt , st ,at , rt , st+1,dt )

where дt is a specific function that is the directed target, rt is the
reward value, and dt is the termination flag. The training data
is generated using the stored sequence by traversing the entire
sequence. For each (st ,at ) pair in the sequence, the following
steps are repeated K times, where K is a configurable model
hyperparameter:
1. Randomly select a function from the list of target functions
(after executing the action) represented as

дt ,i ∈ Ft ∪ Ft+1 ∪ ... ∪ FN

2. Calculate the reward based on the selected target:
• The executed Action triggers the target Function, rt = 1,
dt = 1

• The executed Action does not cause a change in the screen,
rt = −0.001, dt = 0

• The target Function can be triggered within n steps after
executing the Action, rt = 0.01 ∗ γn , dt = 0

• Others, rt = −0.0001, dt = 0
where γ is the discount factor.

iv. The Trainer continuously extracts training data from the Re-
play Buffer and updates the model parameters

rt + γ (1 − dt )Q
′(st+1,arдmaxaQ(st+1,a,дt ;θ ),дt ;θ ′)

→ Q(st ,at ,дt ;θ )
where Q ′ is the target network, its parameters are θ ′, and the
parameters are periodically copied from the prediction network.

v. During training, the model is saved to the cloud and Shared
Storage simultaneously. The Worker regularly obtains the latest
model from Shared Storage and replaces the local model.

4.2.2 Guided GUI Exploration. At the beginning of the exploration,
the Worker loads the optimal model from the storage and assigns
target functions to each device. The client sends the current GUI
information to the Worker. The Worker parses all the available ac-
tions in the current state. The Worker inputs this information into
the local model, obtains the Q-value for each action, and selects the
action with the highest Q-value to return to the client for execution.

This continues until the target is covered or the maximum num-
ber of steps is reached. It then proceeds to select the next target
function.

4.3 Implementation

Hawkeye is designed as a comprehensive automated testing frame-
work for Android, comprising code instrumentation, client and
server modules. The code instrumentation tool is developed using
Java based on the ASM framework to insert function coverage log-
gers and send socket messages of real time incremental function
coverage to the client. A Gradle plugin is developed using Groovy
to perform code instrumentation automatically in existing Android
projects. The client module is written in Java and leverages the GUI
tree retrieving and action execution features of Fastbot2 [19] to
interact with the App being tested. The server module, developed
in GoLang, facilitates event selection and enables multi-device col-
laboration (which permits numerous clients to simultaneously test
the same App on multiple devices while sharing the same deep
reinforcement learning agent). The server provides APIs to receive
GUI trees and returns events for execution by the clients.

5 EXPERIMENT

In this Section, we evaluate the feasibility and effectiveness of
Hawkeye in generating GUI actions that exercise changed func-
tions. We use 10 open source Android Apps from the F-Droid App
market and one commercial App developed by ByteDance. A de-
scription of the Apps used is provided below,
Open source - We use 10 Android applications from the F-Droid
App market 2 that has a catalogue of free and open source Android
applications. We selected top rated Apps in F-Droid with a well doc-
umented commit history across multiple versions. Table 1 lists the
names and versions for the Android Apps used in our experiment.
For each open source App, we chose five commits that followed the
base version, each leading to updates in a Java or Kotlin method of
the respective App.
Commercial - We use a prominent enterprise collaboration soft-
ware, Feishu, developed by ByteDance (#11 in bold in Table 1). The
code instrumentation and APK building is carried out by the App
development team. Changes used for this evaluation are subsequent
sub-versions since the base version.

Index App Name Base Version APK Size

1 Amaze File Manager 3.8.1 15.43 MB
2 Diary 1.77 0.58 MB
3 OpenTasks 1.2.3 0.30 MB
4 Simple Draw 6.8.0 5.56 MB
5 Simple File Manager 6.14.0 3.73 MB
6 WiFiAnalyzer 3.0.1 3.48 MB
7 Hibi 1.3.1 11.98 MB
8 Suntimes 0.14.12 40.12 MB
9 Nani 0.3.0 8.20 MB
10 Currency 1.31 4.43 MB
11 Feishu 5.15.1 183.7 MB

Table 1: Subject Apps: 10 open source Apps and 1 commer-

cial App (listed at #11)

2https://f-droid.org/
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We compare Hawkeye’s performance with state-of-the-art
(SOTA) Android GUI testing tools,ARES[27] and an in-house model-
based testing tool, Fastbot2 [19]. We investigate the following re-
search questions:
Q1. Hawkeye versus Fastbot2 exploration: Is Hawkeye able

to exercise the selected target functions better than Fastbot2?

To answer this question, we first randomly selected 50 functions
within each open source App as our target functions. Then, we
used Hawkeye and Fastbot2 to each generate 1000 events to
exercise the App Under Test (AUT). For each tool, we recorded
the number of target functions covered by the generated events
and compared their results.

Q2. Efficiency in testing commit-associated changes: Is

Hawkeye more effective in exercising changed functions associ-

ated with commits in open source Apps, when compared to ARES

and Fastbot2?

For each commit in an open-source App, we manually identified
changed functions associated with it. We then ran Hawkeye,
ARES, and Fastbot2 to generate 1000 events each to exercise
the AUT. The number of events required by each approach
to exercise the changed functions associated with the commit
were recorded. The approach that required the lowest number
of events to exercise all the changed functions was deemed the
most effective for that particular commit. When a tool failed to
exercise all the changed functions within 1000 events, the result
was recorded as 1000.

Q3. Effectiveness on a commercial App: Is Hawkeye better

than Fastbot2 in exercising changed functions within the

commercial App, Feishu? For this question, we use developer
identified changed functions for updates in Feishu. As the
commercial App is large and complex, we set 200 GUI events as
the maximum number of attempts for each changed function
and report whether these functions are covered by Hawkeye.
We then execute Hawkeye and Fastbot2 to assess number of
events required to execute all changed functions.

Q4. Analysis of Hawkeye performance: What factors impact

the effectiveness of Hawkeye in exercising changed functions? We
conduct a study using the commercial App, Feishu, to better un-
derstand the reasons for Hawkeye being effective at exercising
some changed functions but not others. We randomly select 100
listener functions (callback functions that are directly bound
to GUI events, such as onClickListener) and check whether
Hawkeye is able to exercise themwithin 200 GUI events for each
function. In contrast to the random selection, we also sample
functions according to their heat – triggered frequency during
training. We report the success rate of exercising heat-based
sampled functions within the same 200-events budget as used
with the random selection.

Selected Tools.We select test input generation tool, ARES for com-
parison in research question 2 since it is the SOTA reinforcement
learning-based GUI testing tool. We attempted to use ARES for
comparison over the commercial App in research question (Q) 3 but
found the time needed to generate events over the commercial App
was immeasurably long and the tool timed out after generating few
events. Fastbot2 is a reusable automated model-based Android GUI
testing tool that leverages probabilistic model and reinforcement
learning to utilise prior exploration data and prioritise new GUI

states that was not covered by previous testing runs. Fastbot2 is not
designed to target changes. We compare with Fastbot2 as it is the
in-house testing tool used by the Feishu developer team.

As mentioned in Section 3.4, it is not possible to make a compar-
ison with CAT and ATUA with equivalent testing capabilities for
change-focused testing, since the static analysis module they de-
pend on is unable to handle large applications, even when utilising
a devbox with 128 GB of RAM.

Experiment Platform. We conducted our experiment on mul-
tiple Samsumg Galaxy S10 devices running Android 11 systems.
Hawkeye and Fastbot2 were run on the mobile devices, while ARES
was run on a MacBook Pro equipped with a 2.6GHz Intel Core i7
Processor.

6 RESULTS

We present results from our experiment in the context of the re-
search questions in Section 5.

6.1 Q1: HAWKEYE versus Fastbot2 Exploration

App Name Fastbot2 Hawkeye Intersection

Amaze File Manager 37 33 31
Diary 40 43 39
OpenTasks 50 39 39
Simple Draw 28 27 22
Simple File Manager 39 49 39
WiFi Analyzer 50 50 50
Hibi 17 39 16
Suntimes 25 37 22
Nani 49 50 49
Currency 32 45 32
Avg. 36.7 41.2 N/A

Table 2: Target Functions Coverage

For the first research question, we assess if randomly selected 50
target functions in each of the open source Apps can be exercised
better by Hawkeye than Fastbot2. Function coverage over the 50
target functions is reported for both tools over each App in Table 2.
The final column in Table 2 shows the number of target functions
covered by both Hawkeye and Fastbot2. On average, across the
Apps, we find Hawkeye outperformed Fastbot2 in terms of target
function coverage. Specifically, Hawkeye covered an average of 45
out of 50 target functions, whereas Fastbot2 covered only 39. Fur-
thermore,Hawkeye achieved a higher function coverage for six out
of the ten open source Apps than Fastbot2. Hawkeye and Fastbot2

both achieved a 100% coverage on the WiFi Analyzer App. This
is because the target functions for this App were easily accessible
through a few actions on the MainActivity.

While Fastbot2 demonstrated similar performance to Hawkeye
across many applications, notable performance disparities were
observed in Currency, Hibi, and Suntimes, where Hawkeye ef-
fectively exercised 12–22 functions more in each of these Apps.
This discrepancy can be attributed to the reachability of the tar-
get functions within these Apps, which, upon manual inspection,
were found to require a greater number of steps on average to be
exercised. Additionally, it is important to highlight the intersec-
tion column in Table 2, that shows a significant overlap between
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the covered functions of both Hawkeye and Fastbot2. This finding
strongly suggests that while there is a common subset of functions
exercised by both tools, Hawkeye has the distinct capability to go
beyond and exercise additional functions within the AUTs. The re-
sults indicate that Hawkeye is more effective in generating events
that comprehensively exercise a broader range of target functions
within the AUT.

6.2 Q2: Efficiency in Testing

Commit-Associated Changes

Table 3 displays the commits for each open-source App to be tested
using Hawkeye, Fastbot2, and ARES. We selected the five most
recent commits with code changes for evaluation. The second col-
umn represents the count of changed functions associated with
each commit, averaging at 6.8 functions updated per commit. We
recorded the number of GUI events needed by each approach to
exercise the changed functions linked to the respective commit. A
stopping criterion of 1000 events was set for the tools. In Table 3,
cells containing the value 1000 indicate that the corresponding tool
failed to exercise the changed functions for that commit. On the
other hand, numbers less than 1000 are considered a success for the
tool, with lower number of events indicating better efficiency in
reaching and exercising the changes. For each commit, the winning
tool is the one with the lowest number of events (shown in bold).

Table 3 makes it evident that all three tools struggle to exercise
changes in a significant portion of the examined commits. Our man-
ual analysis revealed that this is largely due to a substantial 18% of
the updated methods being callable only under specific Android or
database versions, rendering them inaccessible when the version of
Android or the database in the AUT does not match. Additionally,
in the case of four commits in Suntimes’s (App# 9), exercising the
target functions necessitates adding an App widget to the home
screen. However, this action is unlikely to occur because adding
home screen widgets requires very specific system setting opera-
tions. Even if the widget is added by default, during testing, when
an event leads to the home screen, all the tools tend to relaunch the
App to avoid operations not related to the App, making it unlikely
to perform this specific action. Currency is the only App where all
five commits were successfully exercised by all three tools. This
can be attributed to the fact that the number of updated functions
associated with the commits for Currency is small and not contin-
gent on specific Android or database versions. Additionally, the
updated functions require a relatively small number of steps to be
exercised.

Success rates for the tools (last row of Table 3), measured as
the fraction of commits that needed less than 1000 events, are
comparable. In terms of the average number of events needed for
each tool to successfully exercise the commits (second to last row of
Table 3),Hawkeye required the fewest number of events on average
– 191 events – to exercise the updated methods of a commit, while
ARES required 202 events and Fastbot2 required 261 events.

Understanding performance based on results from the open-
source App commits proves challenging due to the intrinsic fragility
and lack of portability of these Apps across various Android and
Database versions. It is crucial to acknowledge and consider these
limitations when interpreting the performance presented in Table 3

App
Index

#Changed
Functions Commit Fastbot2 Hawkeye ARES

1

1 6d6a192 1000 1000 1000
1 92256a7 1000 54 6

6 27d1e2b 1000 1000 1000
3 67d6712 1000 1000 1000
33 538fd8a 1000 1000 1000

2

3 c4aabf2 309 399 115

1 54c1335 354 487 873
1 7c51891 55 4 21
1 2070eb0 305 5 6
1 f66a966 71 81 197

3

1 f53cddd 1000 1000 633

1 1a1669f 1000 1000 109

1 f175a71 1000 773 1000
2 700a773 1000 701 20

4 47d6676 1000 1000 1000

4

2 fd7bca5 630 9 754
1 621d932 1000 1000 1000
6 c660f5d 1000 1000 1000
6 4e2e9f7 1000 1000 1000
3 c1c9be2 1000 1000 1000

5

2 ea56927 1000 1000 1000
4 440df4e 1000 1000 1000
3 0488984 40 27 3

2 ce18931 1000 1000 1000
1 0b5d6ae 1000 1000 183

6

22 b8c4544 1000 1000 1000
1 e750aca 3 10 5
51 8ddf52d 1000 1000 1000
1 d7f08ff 1000 1000 1000
5 238fae0 1000 1000 1000

7

53 2c4dccd 1000 1000 1000
2 294609c 1000 1000 1000
1 944848a 1000 1000 1000
2 b7f113b 240 4 25
4 1456648 850 1000 1000

8

1 69ccd65 462 524 1000
4 4dfa28c 1000 1000 1000
11 69db31a 1000 1000 1000
2 2f0e4a3 165 133 6

2 ab47bca 1000 1000 1000

9

3 f833032 1000 1000 1000
1 95d6d30 2 3 563
5 3b27600 1000 1000 1000
27 ad10290 1000 1000 1000
12 cbdf999 1000 1000 1000

10

30 3ba6c7c 1000 1000 1000
5 7156da1 488 20 1000
1 966b094 52 196 40

1 81e79d8 382 1000 277

3 dc3bf39 22 3 2

Avg. 6.8 - 261 191 202

Success
Rate - - 34% 36% 38%

Table 3: Changed Function Coverage on Open-source Apps.
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Commit
ID

# Changed
Functions

Fastbot2 HawkEye
#

Covered
Coverage

(%)
#

Covered
Coverage

(%)
1 11 0 0.0% 10 90.9%

2 8 4 50.0% 2 25.0%
3 68 0 0.0% 34 50.0%

4 14 1 7.1% 0 0.0%
5 393 0 0.0% 5 1.3%

6 138 0 0.0% 17 12.3%

7 209 0 0.0% 15 7.2%

8 216 0 0.0% 0 0.0%
9 36 0 0.0% 0 0.0%
10 59 0 0.0% 10 16.9%

11 40 0 0.0% 14 35.0%

12 133 2 1.5% 7 5.3%

Table 4: Changed Function Coverage on Feishu

and drawing conclusions about the effectiveness of the testing tools.
To address these limitations and provide a more comprehensive
evaluation, we include a well-maintained commercial App in our
analysis in the next section.

6.3 Q3: Effectiveness on a Commercial App

Table 4 shows twelve commits for the Feishu App, the number of
changed functions identified by the developers for each commit,
and the function coverage achieved by Hawkeye and the baseline
Fastbot2. The commits were chosen from merge requests by Feishu
developers that transpired within a one-week time period. Across
the 12 commits, Fastbot2 performed poorly, achieving less than
10% coverage on 11 out of the 12 commits. Hawkeye performs
considerably better than Fastbot2 on 8 of the 12 commits with
improvements in the range of 1.3 − 90.9%. Fastbot2 performs better
than Hawkeye on 2 out of the 12 commits, when the random
exploration in Fastbot2 fortuitously identified the correct sequence
of events, resulting in more effective testing for those particular
commits in this evaluation instance.

Function coverage with Hawkeye is 5% or less for half the com-
mits. This is primarily because of the stopping condition we im-
posed of 200 events per changed function. This condition was set
to ensure that results could be obtained within a reasonable time
frame but Fastbot2 does not have this constraint. For a commer-
cial App of Feishu’s scale, limiting the number of events to 200
per changed function may indeed result in relatively low coverage.
Despite this limitation, Hawkeye emerges as the most promising
tool, showcasing the potential to handle the complexity of a com-
mercial App and effectively test updates. We anticipate that lifting
this event limit will lead to improved coverage. It’s important to
recognize that this is an initial step in testing commit-associated
changed functions for commercial Apps, and further advancements
are necessary, particularly in refining the reinforcement learning
technique to better exercise the changes. Nonetheless, Hawkeye’s
performance surpasses that of the in-house company tool, Fastbot2,
and has been positively received by developers who find it efficient
and time-saving for exercising changes.

6.4 Analysis of Hawkeye Performance

6.4.1 Listener Function Coverage. We randomly selected 100 lis-
tener functions from Feishu as target functions and set the maxi-
mum number of GUI events for each function as 200. We repeated
this experiment 13 times.

On average, Hawkeye achieved coverage for 52 out of the 100
functions, utilizing an average of 42 GUI events per function. Cu-
mulatively, across all 13 testing runs, Hawkeye covered a total of
89 out of the 100 functions. It is worth noting that, Hawkeye is
able to cover the first 44 functions efficiently within the initial 5
minutes. However, it then expended the entire 3-hour budget to
cover the remaining functions. As with research question 3, we
believe that function coverage will improve if Hawkeye uses more
than 200 GUI events for each function given the complexity and
size of Feishu.

6.4.2 Function Coverage based on Heat. As shown in Table 5, fol-
lowing 10 hours of model training based on random exploration,
196 functions were exercised more than 300 times, 192 functions
were exercised between 100 and 300 times, 159 functions were ex-
ercised between 50 and 100 times, 260 functions were exercised
between 20 and 50 times, 208 functions were exercised between 10
and 20 times and 558 functions were exercised less than 10 times.

As anticipated, we observed a clear correlation between function
coverage achieved by Hawkeye and the exploration frequency dur-
ing model training. Functions that were more frequently explored
(exceeding 300 times) during training were also more readily cov-
ered by Hawkeye’s tests. Conversely, functions that had a lower
exploration frequency during training (less than 50 times) posed
a challenge for Hawkeye in achieving coverage. This correlation
aligns with expectations and underscores the importance of train-
ing the model on a broad set of functions. Our current training
was limited by resource availability. However, we are optimistic
that this limitation can be overcome by scaling up our training
infrastructure, increasing the number of devices used for training,
and thereby covering a more extensive range of GUI states and
functions.

Developer Feedback and Scale. Hawkeye has gained wide-
spread adoption within multiple product teams at ByteDance, in-
cluding Douyin, Toutiao, and Feishu, which collectively boast bil-
lions of user installations. In a comprehensive one-year review,
Hawkeye demonstrated an improved change-impacted statement
coverage by 11%. Additionally, it considerably improved the detec-
tion of update-related crashes, achieving a threefold increase in
identification.

The product teams using Hawkeye have consistently praised its
effectiveness in facilitating thorough testing of App changes and
preemptively exposing potential App crashes before they impact
end-users. This positive feedback underscores Hawkeye’s value in
maintaining App quality and user experience.

Furthermore, Hawkeye is actively invoked hundreds of times
each week. Whenever a new merge request is submitted to the
codebase, the continuous integration (CI) pipeline automatically
initiates the creation of a corresponding APK file (App installation
package). Subsequently, Hawkeye is triggered to conduct a smoky
test, ensuring the quality of the introduced code changes before they
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Function Heat Range >=300 100-300 50-100 20-50 10-20 <10
Number of Functions 196 192 159 260 208 558
Success Rate >30% 76.5% (150/196) 29.2% (56/192) 11.9% (19/159) - - -

Table 5: Case Study on Feishu

are deployed. This seamless integration emphasizes Hawkeye’s
role in upholding code quality and robustness in the development
process.
6.5 Lessons Learned

Both Fastbot2 and Hawkeye have been deployed at ByteDance for
Android App testing for several years. Based on this deployment
experience, we provide valuable lessons for practitioners in the
field of automated Android App testing:
Lesson 1: While static analysis-based tools are precise, they
struggle to scale to commercial Apps. Existingmethods use static
analysis to construct App state transition graphs and infer changes
by analyzing and mapping widget definitions and listener func-
tions [22, 25, 35]. However, Android App development offers vari-
ous ways to define widgets and bind their callbacks. Dynamic addi-
tion of widgets in the source code is common practice in complex
commercial Apps but the support for this feature is cumbersome,
accompanied by high overhead in static analysis. In our experience,
we found static analysis-based tools failed to analyze our Apps due
to out-of-memory crashes or incomplete results when reducing
precision levels. This limitation drove us to adopt a fully dynamic
approach, building the transition graph during runtime.

Lesson 2: Leveraging historical exploration data. In an in-
dustrial setting, the continuous daily testing of Apps utilizing hun-
dreds of devices generates a wealth of historical exploration data,
including transition graphs and screenshots. Fastbot2 and Hawk-
eye represent our initial efforts to harness this valuable data to
prioritize untested activities and change-impacted functions. It is
worth noting that the form of exploration data and the methods
used for capturing and storing them are vital considerations. Ex-
isting techniques commonly store exploration data as transition
graphs. However, we found this method proves impractical for
large, complex Apps, consuming excessive memory. To overcome
this challenge, we adopted a more efficient approach to store ex-
ploration data by capturing and storing only the mapping between
events and functions, not the full graph, ensuring both memory
and processing efficiency. This adjustment proved to be effective
and scalable in storing exploration data for ByteDance Apps.

Lesson 3: Integration into CI pipeline. The seamless integra-
tion of Hawkeye into the CI pipeline, coupled with its automatic
triggering for every merge request, played a pivotal role in maxi-
mizing its utility for testing App updates. This approach ensured a
robust quality assurance process and significantly contributed to
the acceptance and enthusiastic use of Hawkeye by developers.

7 THREATS TO VALIDITY

A potential threat to internal validity is bugs in Hawkeye’s im-
plementation. To mitigate this threat, we conducted careful code
reviews and extensive testing. When used on the commercial App,
the developers at the commercial site conducted several rounds
of manual inspection to mitigate the risk of manual mistakes or
omissions in the tool. It is also worth noting that tools adopted

by the product team undergo rigorous inspection and evaluation
before they are adopted.

A potential threat to the external validity is related to the fact
that the set of Android Apps we have considered in this study may
not be an accurate representation of a potential App under test. We
attempt to reduce the selection bias by using a dataset of 10 open
source Apps from different categories with a variety of Android
features, and one large, complex commercial App.

A threat to construct validity is caused by restricting the number
of GUI events generated by the tools – Hawkeye, Fastbot2, ARES –
to 1000 events for open source Apps and 200 for the commercial
App. Restriction to 1000 input events is inspired from related work
in GUI testing [3, 17] that used this in their default settings.

A final threat to validity is the limited number of tools used in
comparison. As discussed in Section 3.4, we cannot compare with
CAT and ATUAwith similar capabilities to test changes as the static
analysis module they rely on fail on large Apps even using a devbox
with 128 GB RAM. We used Fastbot2 and ARES for comparison as
they are the SOTA RL-based GUI testing tools that we are aware of.

8 CONCLUSION

In this paper, we presented Hawkeye, specifically designed for
generating GUI test inputs for exercising modified functions associ-
ated with Android App updates.Hawkeye uses deep reinforcement
learning to learn the mapping between GUI events and functions,
producing GUI event sequences that interact with these modified
functions. To assess the performance of Hawkeye, we conducted
an empirical evaluation, comparing it against ARES and Fastbot2

across 10 open-source Android Apps and a large commercial App.
Our evaluation led to the following key observations:
(1) Hawkeye can execute modified functions more frequently than

Fastbot2 and ARES, while using fewer GUI events.
(2) For a complex commercial App, Feishu, Hawkeye exhibits bet-

ter performance than Fastbot2 in covering listener functions.
Hawkeye covers 85% of Feishu’s randomly selected listener
functions within the first 180 minutes of a testing run.

(3) Hawkeye is effective at exercising functions that were com-
monly observed during model training.

(4) Internally, within our organization, Hawkeye is integrated into
the continuous integration pipeline and is triggered hundreds
of times per week whenever changes are submitted to the code-
base. On average, the utilization of Hawkeye leads to a 11%
increase in change-impacted statement coverage. Moreover, it
uncovers App crashes three times more frequently in an indus-
trial setting, showcasing its efficacy in enhancing test coverage
and identifying potential issues in App updates.
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