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ABSTRACT
With the advancement of device software and hardware perfor-
mance, and the evolution of game engines, an increasing number
of emerging high-quality games are captivating game players from
all around the world who speak different languages. However, due
to the vast fragmentation of the device and platform market, a well-
tested game may still experience text glitches when installed on a
new device with an unseen screen resolution and system version,
which can significantly impact the user experience. In our testing
pipeline, current testing techniques for identifying multilingual
text glitches are laborious and inefficient. In this paper, we present
𝐴𝐺3, which offers intelligent game traversal, precise visual text
glitch detection, and integrated quality report generation capabili-
ties. Our empirical evaluation and internal industrial deployment
demonstrate that 𝐴𝐺3 can detect various real-world multilingual
text glitches with minimal human involvement.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Computing methodologies→ Scene anomaly detec-
tion.
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1 INTRODUCTION
Graphical User Interface (GUI) refers to the graphical display of
the device operation user interface and is mainly consists of graph-
ical buttons and text, which significantly contributes to the user
experience of the application [26]. Due to issues such as device
compatibility, various GUI glitches may frequently occur in gaming
apps. Text glitches are one of the noticeable types of glitches, which
usually appear in multilingual games and have a severe impact
on the user experience when the glitch appears on game instruc-
tions, direction labels, and other critical parts. With the global
expansion of the gaming industry and the increasing demand for
high-quality games, the number of multilingual games has signif-
icantly increased. Therefore, detecting text glitches is critical to
ensuring the user experience and preventing potential user loss.

In the industrial environment, game quality assurance mainly in-
volves manual inspection and automated GUI exploration. However,
they face several challenges with multilingual text glitch detection.
Firstly, with the diversity of mobile devices and the accelerated
update frequency of game versions, manual inspection requires
significant manpower to deal with compatibility issues between
multiple versions, device models, operating systems, languages,
and screen resolutions. Furthermore, for multilingual GUI issues,
subtle glitches may be overlooked due to human carelessness.

Secondly, the vast majority of existing automated GUI explo-
ration tools only provide crash and functional bug detection capa-
bilities [4, 16, 18, 19, 24, 33–35, 37–39, 42, 43, 47, 52]. To the best
of our knowledge, only [12, 31, 32, 45, 46, 53] support GUI glitch
detection, and among these tools, OwlEyes [32, 53] and GLIB [12]
include text glitch detection. However, these tools primarily focus
on graphical glitches and do not pay enough attention to detecting
text glitches in multilingual games. Glib generates GUI glitch data
by modifying the source code of the game, which is not feasible
when there is no access to the source code and build tools. More-
over, GLIB does not mention the game traversal algorithm they
use. On the other hand, OwlEyes is designed for regular Android
apps and employs DroidBot [29] for app exploration by querying
standard widgets through the Android Debugging Bridge (ADB)
and operating on available widgets shown on the current screen.
However, game screens are usually rendered using game engines,
and operable GUI elements are not detectable through ADB. Other
GUI glitch detection tools [31, 45, 46] focus on using reinforcement
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learning and imitation learning to interact with key objects in a
game, rather than covering more textual scenarios in the game.

To address the aforementioned challenges, we present 𝐴𝐺3

(Automatic Game GUI Text Glitch detection), which provides the
following capabilities:

(1) Image-based decision-making.𝐴𝐺3 extracts operable GUI
elements for game exploration and detects text glitches based
on computer vision. This technique is non-intrusive to the
game under test and has advantages such as no source code
needed, minimal dependency, and high scalability.

(2) Intelligent game traversal. 𝐴𝐺3 uses an intelligent tra-
versal algorithm that prioritizes exploring scenes with more
text and only requires a simple configuration before testing
any multilingual game to reduce human intervention.

(3) Multilingual text glitch detection. 𝐴𝐺3 supports the de-
tection of text overlap and text overstep in multilingual
games. We conduct an in-depth study of the causes and char-
acteristics of these issues and design the optimal detection
algorithm for them by deep learning methods.

(4) Test report generation. After each round of testing, AG3
automatically generates a comprehensive report that con-
tains the number, screenshots, and repair suggestions of text
glitches. This report is useful for game developers to track
and fix issues, and ensures the overall quality of the game.

To evaluate the effectiveness of 𝐴𝐺3, we conduct an empirical
evaluation of the tool’s game traversal and text glitch detection
capabilities. Experimental results show a high precision rate. Fur-
thermore, after two years of industrial deployment,𝐴𝐺3 uncovered
over 2000 real text glitches in our games and its automatically gener-
ated test reports have helped our developers reduce the time spent
on fault localization and debugging significantly. The experimental
results and daily deployment of 𝐴𝐺3 demonstrate its usefulness in
detecting and reporting text glitches accurately and efficiently.

In summary, this paper presents a new automated multilingual
game testing framework with intelligent traversal and optimal text
glitch detection capabilities. The main contributions are:

• We design detection algorithms based on deep learning for
two common types of game text glitches, namely text overlap
and text overstep.
• Our approach significantly reduces the manpower required
for game testing teams and improves the overall efficiency
of the testing process.
• We conduct a series of experiments and report the daily de-
ployment of our framework, demonstrating its effectiveness
in automatically playing games and detecting text glitches
with high precision.
• We discuss our reflections and lessons learned from the im-
plementation and deployment of our approach in the indus-
trial environment.

2 BACKGROUND
In this section, we provide a brief introduction to the fundamental
concepts of game testing and text glitch detection.

Figure 1: Compatibility Issue Distribution

2.1 Automated Game Testing
Manual game testing involves testers playing the game and per-
forming traversal scripts, which are typically written in the form
of a specification on how to play the game or recorded GUI action
sequences for tools to replay and screen for visual bugs. Manual
testing is usually labor-intensive, and writing comprehensive tests
is challenging and time-consuming. This gives rise to automated
testing tools, which can be classified into two categories:

Source code instrumentation-based tools obtain the GUI tree of the
game under test and inject executable operations into the process
through the software development kit (SDK) provided by the game
vendor. The major disadvantage of this method is that a poorly de-
veloped SDK may have side effects on the performance and stability
of the host app, which can compromise the quality of the game. Ad-
ditionally, this method may not be able to operate on system-level
pop-up windows, which can lead to incomplete testing results.

Image-based tools utilize image recognition techniques to iden-
tify operable GUI elements displayed on the screen. As screens
can be captured via screenshots, this method does not require any
code or app instrumentation, and it does not affect the stability and
performance of the game under test. This makes it a non-intrusive
and scalable technique for automated game testing.

2.2 GUI Glitches and Text Glitch Detection
In 2021, a game testing company TestBird [54] conducted a study in
which they collected and tested 32, 362mobile game apps. The study
reported a total of 1, 293, 809 compatibility issues across 10 different
categories, with GUI glitches accounting for the largest proportion,
as illustrated in Figure 1. Among the GUI glitches, text glitches
were a major issue, and detecting them requires not only efficient
detection algorithms but also practical and effective automated
game exploration tools. As a result, the development of reliable and
accurate tools for the detection of text glitches, as well as other GUI
issues, has become increasingly important in the gaming industry.

Among the multilingual text glitches found in games, text over-
lap and text overstep are themost common issues. Thus, we focus on
detecting these two types of issues. Text overlap occurs when mul-
tiple text lines overlap, as shown in Figure 2a, while text overstep
happens when the text exceeds the GUI box in which it is located,
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(a) Text Overlap (b) Text overstep

Figure 2: Examples of Text Glitches

as shown in Figure 2b. These two issues usually arise due to de-
vice compatibility and language translation problems. The length of
words and sentences with the same meaning varies greatly between
different languages, leading to text spilling over the GUI box or
overlapping with other text in the original GUI box.

3 OUR APPROACH
In this section, we introduce 𝐴𝐺3, a non-intrusive multilingual
game testing tool, which aims to achieve two primary objectives:
high game scenario coverage and effective glitch detection. 𝐴𝐺3

consists of two main modules: Intelligent Traversal (Section 3.2)
and text glitch detection (Section 3.3).

3.1 Overview
Automated code instrumentation for glitch detection is not practical
for industrial game apps as different game studios have customized
building pipeline, project structure and native dependencies. In
additional, we cannot obtain complete source code from all game
studios due to confidential reasons. As a result, we recognize the
feasibility of image-based techniques in supporting the quality
assurance of our games. Through discussions with our development
and testing teams, we have identified that text overlap and text
overstep bugs often occur in multilingual game screens. However,
due to the complex nature of game screenshots and the small areas
affected by text glitches, it is challenging to locate these bugs even
with manual viewing. Moreover, there has been no dedicated work
to define and study multilingual game text glitches. Therefore, we
define and study these two types of game text glitches in this paper
and develop detection algorithms for them.

The automation testing workflow of 𝐴𝐺3 is shown in Figure 3. In
this workflow, the Intelligent Traversal module receives the screen-
shot of the current game screen, encodes, analyzes, stores, and
decides on the next operation, and then completes the interaction
with the device until the entire game traversal is completed. The
end of the game traversal is primarily determined by the task config-
uration. Simultaneously, the tool automatically detects text glitches
on the game screenshots and saves the detection results into the
test report. The report is sent to the tester’s mailbox automatically
after the game traversal is complete. The test report includes the
test case name and elapsed time, as well as the number of text over-
step and text overlap detected and screenshots of text glitches (like
Figure 6). The time interval for text glitch detection is generally set
to the average time interval of adjacent interactions, and it is set
to 1 second, empirically. Overall, the automation testing workflow

of 𝐴𝐺3 aims to provide a comprehensive and efficient automated
testing solution for multilingual games.
3.2 Intelligent Traversal
To enable scene classification, game GUI detection, and OCR engine,
we use a combination of traditional digital image processing meth-
ods and deep learning methods. The powerful target localization
and state perception technology of computer vision is leveraged
to construct a scene traversal graph, which enables the generic
game automated traversal for supporting the automated game text
glitches detection.

Intelligent Traversal comprises four core modules: State Percep-
tion, Status Recorder, Observer, and Manager (described in detail
below). The primary goal is to dynamically construct a directed
game traversal graph and complete a full traversal of that graph,
i.e., to operate on all GUI on each scene node. Our game traversal
graph uses scene screenshots as nodes and the operation informa-
tion between two different scene screenshots as their edges. It is
important to note that the image similarity of the two screenshots
is calculated to determine if they are the same node. The image
similarity calculation method refers to the cosine similarity [58]
between two image encoding features.

3.2.1 State Perception. To facilitate efficient and accurate auto-
mated traversal of game scenes, Intelligent Traversal analyzes the
GUI layout of the current screenshot and encodes the screenshots.
The analysis results are sent to State Recorder, Observer, and Man-
ager, respectively. For image encoding, we spread the last layer
of convolutional features of VGG16 [55] into a one-dimensional
vector as the encoding feature of the screenshot, which is used for
image similarity calculation.

The GUI layout analysis includes multi-category GUI detection,
multilingual OCR engine, and game screenshot scene classification.
The multi-category GUI detector is responsible for locating and
classifying GUI elements on the game screenshot into three cat-
egories: "Button", "Cancel", and "Pop-ups". Our multilingual OCR
engine can support 44 languages and is responsible for the detec-
tion and recognition of multilingual text. Game screenshot scene
classification is implemented using a simple deep learning classifier
that classifies game screenshots into three categories: normal game
screen, non-game screen (the screen outside the game APP), and
game trap screen (the screen that does not need to be traversed in
the game APP, such as advertising screens).

The above-mentioned GUI locations, OCR results, screenshot
scene types, and image encoding features collectively form the
features of each scene node in the game traversal graph. Overall,
by leveraging state-of-the-art computer vision and deep learning
techniques, Intelligent Traversal provides a comprehensive analy-
sis of screenshots, allowing for efficient and accurate game scene
traversal and the detection of text glitches in multilingual games.

3.2.2 Observer. The Observer module is responsible for monitor-
ing the traversal state and detecting exceptions such as being out of
the game interface and game screen stuck. When such exceptions
occur, the Observer module synchronizes the exception message to
the Manager and Status Recorder.

Out of the game interface exceptions are determined by the
screenshot types from State Perception. If the similarity of two
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Figure 3: 𝐴𝐺3 ’s Workflow in Testing

consecutive screenshots is high, it is indicative of a game screen
that is stuck and not responding.

3.2.3 Manager. The Manager module analyzes the current node
information from State Perception, the exception information from
Observer, and the game traversal graph to make a comprehensive
decision on the next operation. It then sends the decision command
to the device to complete a single round of interaction and updates
the traversal graph. It also sends the decision information to the
Status Recorder to record the traversal progress.

3.2.4 Status Recorder. The Status Recorder module is responsible
for recording all input information, including all node characteris-
tics output by State Perception, exception information monitored
by Observer, decision and traversal graph output by Manager.

Overall, by leveraging computer vision and machine learning
techniques, the Intelligent Traversal module enables efficient and
accurate automated traversal of game scenes, facilitating the detec-
tion of text glitches in multilingual games.

3.3 Vision-Only Text Glitches Detection
As an non-intrusive tool, 𝐴𝐺3 relies solely on visual information
to detect text glitches based on computer vision. There are two
main approaches in computer vision: digital image processing and
deep learning. Digital image processing involves using computer
algorithms to manipulate digital images, while deep learning relies
on artificial neural networks to learn features directly from data. In
ourwork, we focus on deep learningmethods and use a combination
of digital image processing and deep learning to synthesize training
samples. Specifically, we use CNNs and transformers to detect and

classify text glitches, enabling 𝐴𝐺3 to automate the process and
improve the efficiency and effectiveness of game testing.

3.3.1 Data Collection. To train our deep learning models, we first
preprocessed the collected screenshots by resizing them to a fixed
size and converting them to grayscale images. In order to develop
text glitches detection algorithms with strong generalization ca-
pabilities, we collected as many real historical bug screenshots as
possible from our testing platform and the game studio quality
assurance team, the specific amount of evaluation data is shown
in Table 1. These screenshots were used to analyze the pattern of
anomalies and for subsequent detection evaluation. Also, to evalu-
ate the effect on real normal screenshots, real normal images from
more than 100 games were collected from different sources.

As text glitch screenshots are rare in comparison to normal
screenshots, text glitch data synthesis is necessary for this task. To
generate the text glitch data, a generation algorithm is designed
based on digital image processing. The pseudo code for this genera-
tion algorithm is shown in Algorithm 1, and its process is illustrated
in Figure 4. During the data generation process, the location of the
overall abnormal text line area ([𝑥 , 𝑦, 𝑤 , ℎ], depicted by the blue
box in the generation image in Figure 4) and its start and end co-
ordinates ([𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑 ], depicted by the green box in
the generation image in Figure 4) are recorded for model training.

Overall, our text glitch detection models are trained using a large
dataset of both synthesized and real glitch samples, ensuring that
they have strong generalization capabilities for detecting various
types of text glitches in multilingual games.

3.3.2 Text Abnormal Detection Algorithm. There are two common
tasks of computer vision: image classification and object detection.
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Figure 4: Data Generation Process

Image classification takes an image as input and outputs with all
the probabilities that the image belongs to each category. Object
detection takes an image as input and outputs the target objects
and their locations and confidence scores respectively.

We introduce 2 different models for text overlap and text overstep
detection. for text overlap detection, features of the text overlap
anomalous regions are relatively subtle compared to the complex
game background and are more similar to the normal samples, a
single image classification or object detection model cannot achieve
plausible results. So we use a combination of image classification
and object detection models to detect text overlap issues. For text
overstep, anomalous regions are more visible and a single object
detection model is sufficient.

Text Overlap Detection. From a global view of the page, the
anomalous region is often very subtle, which can have a signif-
icant impact on the object detection model that takes the whole
page as input. To improve model effectiveness, we further classify
the candidate local regions detected by the object detection model.
Since each character in the anomalous region will correspond to a
normal or anomalous label, this is somewhat similar to tasks such as
text classification in natural language processing. Given the recent
success of Transformers in natural language processing, we chose
to build our classifier based on the Vision Transformer (ViT) [21].

Firstly, YOLOX [23] is used to detect and locate suspected abnor-
mal text, and the text image is cut out from the original image based
on coordinates. The image is then sent to the transformer classifier
to perform binary classification for each token. The transformer
classifier is introduced with the example of overlapping text, and
its structure is shown in Figure 5. Refer to the ViT (Vision Trans-
former) [21] and the characteristics of abnormal text images, we
divide the whole image into 16 small image patches according to
the horizontal direction. Then, these linear embedding sequences
and a learnable embedding vector cls-token are inputted to the
transformer-encoder, and each encoding image patch is binarized
classified by MLP (Multilayer Perceptron) [50]: normal or abnormal.
Finally, when the cls-token patch is classified as abnormal, and

Algorithm 1 Text Abnormal Image Generation
Input: Normal Image 𝐼𝑚𝑔, generated object 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠
1: 𝑇𝑒𝑥𝑡𝐿𝑖𝑛𝑒𝐿𝑖𝑠𝑡 ← the list of all text lines in 𝐼𝑚𝑔 obtained by

OCR engine. Each text line includes coordinate information (𝑥 ,
𝑦,𝑤 , ℎ) and text content 𝑇𝑒𝑥𝑡

2: 𝐵𝑢𝑡𝑡𝑜𝑛𝑈 𝐼𝑠 ← the list of UI with "Button" label of 𝐼𝑚𝑔 by UI
detector

3: 𝐵𝑢𝑡𝑡𝑜𝑛 ← the button from 𝐵𝑢𝑡𝑡𝑜𝑛𝑈 𝐼𝑠 , and a text line is sur-
rounded by it

4: 𝑇𝑒𝑥𝑡𝑃𝑖𝑥𝑒𝑙𝑠 ← the foreground text pixel value of a text line
5: 𝑇𝑒𝑥𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ← the text overlap data generation process
6: 𝑇𝑒𝑥𝑡𝑂𝑣𝑒𝑟𝑠𝑡𝑒𝑝 ← the text overstep data generation process
7: 𝐴𝑏𝐼𝑚𝑔 ← the synthetic image obtained after 𝐼𝑚𝑔 is written

into abnormal texts
8: if 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠 is 𝑇𝑒𝑥𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝 then
9: 𝐶ℎ𝑜𝑖𝑐𝑒𝑇𝑒𝑥𝑡𝐿𝑖𝑛𝑒 ← the target text line, which randomly se-

lected from 𝑇𝑒𝑥𝑡𝐿𝑖𝑛𝑒𝐿𝑖𝑠𝑡

10: 𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐴𝑟𝑒𝑎 ← the area to be written in𝐶ℎ𝑜𝑖𝑐𝑒𝑇𝑒𝑥𝑡𝐿𝑖𝑛𝑒 ,
that is, the coordinates of the text overlapping area (𝑥𝑠𝑡𝑎𝑟𝑡 ,
𝑦𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑 )

11: Write a text with random 𝑇𝑒𝑥𝑡 and font in 𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐴𝑟𝑒𝑎

of 𝐼𝑚𝑔 to get 𝐴𝑏𝐼𝑚𝑔

12: end if
13: if 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠 is 𝑇𝑒𝑥𝑡𝑂𝑣𝑒𝑟𝑠𝑡𝑒𝑝 then
14: 𝐶ℎ𝑜𝑖𝑐𝑒𝑇𝑒𝑥𝑡𝐿𝑖𝑛𝑒 ← the target text line, which randomly se-

lected from 𝑇𝑒𝑥𝑡𝐿𝑖𝑛𝑒𝐿𝑖𝑠𝑡 conditional on it has surrounding
𝐵𝑢𝑡𝑡𝑜𝑛

15: 𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐴𝑟𝑒𝑎 ← the area to be written in𝐶ℎ𝑜𝑖𝑐𝑒𝑇𝑒𝑥𝑡𝐿𝑖𝑛𝑒 ,
that is, the coordinates of the text exceed its surrounding
𝐵𝑢𝑡𝑡𝑜𝑛 (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑 )

16: Get the 𝑇𝑒𝑥𝑡𝑃𝑖𝑥𝑒𝑙𝑠 of 𝐶ℎ𝑜𝑖𝑐𝑒𝑇𝑒𝑥𝑡𝐿𝑖𝑛𝑒
17: Write a text with random 𝑇𝑒𝑥𝑡 with 𝑇𝑒𝑥𝑡𝑃𝑖𝑥𝑒𝑙𝑠 in

𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐴𝑟𝑒𝑎 of 𝐼𝑚𝑔 to get 𝐴𝑏𝐼𝑚𝑔

18: end if
19: Update the abnormal text line location:(𝑥 , 𝑦,𝑤 , ℎ)
Output: Synthetic text abnormal image𝐴𝑏𝐼𝑚𝑔with abnormal text

line location (𝑥 , 𝑦,𝑤 , ℎ) and abnormal area coordinates (𝑥𝑠𝑡𝑎𝑟𝑡 ,
𝑦𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑 )

three or more consecutive patches are also classified as abnormal,
the area itself is classified as abnormal.

The synthetic abnormal images mentioned earlier are used to
train the whole YOLOX model. Locations of the abnormal text
regions and the specific starting and ending coordinates of the
abnormal regions are used to construct positive samples of the
training data for the classification model. Meanwhile, we use OCR
technique to select a portion of normal sample regions from the
training set of the object detection model as negative samples.

Text Overstep Detection. We use a simple YOLOX model for text
overstep detection. The training dataset is also constructed using
the same data synthesis method mentioned before.

3.4 Implementation and Usage
𝐴𝐺3 is implemented in Python and compiled into a wheel package.
After setting up the configuration file to specify the installation file
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Figure 5: Transformer Classifier Structure

(a) Zoom in on Text Overlap (b) Zoom in on Text Overlap

(c) Zoom in on Text Overstep (d) Zoom in on Text Overstep

Figure 6: Detection Result Examples

of the game, device connection configuration and time duration,
the tester can quickly start Intelligent Traversal and Text Glitches
Detection by a single command. After the automatic traversal of the
game, the text glitches detection report will be automatically sent
to the tester’s mailbox. In addition, modules of 𝐴𝐺3 are provided
as independent functions, making the tool customizable by writing
a new test script and calling these functions.

4 EVALUATION AND DEPLOYMENT
We investigate the following research questions (RQ) based on
empirical evaluation and industrial deployment to study the effec-
tiveness and usefulness of 𝐴𝐺3:
RQ1. How effective is𝐴𝐺3 in terms of detecting multilingual game

text glitches?
RQ2. How effective is 𝐴𝐺3 in terms of automated game traversal?
RQ3. What are the results achieved by 𝐴𝐺3 in practical industrial

deployments?
We discuss evaluation metrics, results and analysis for each

research question in the rest of this section.

Glitch Type Normal Glitch
Text Overlap 1,658 55
Text Overstep 1,658 288

Table 1: Evalutation Data Distribution

4.1 RQ1. Effectiveness of Multilingual Game
Text Glitch Detection

Experiment Datasets. The evaluation dataset used in our study
includes real historical text abnormal screenshots, also known as
glitch images, provided by our quality assurance team, as well as
over 1600 real screenshots without glitches, known as normal im-
ages, from more than 100 real games. The use of real-world data
for the evaluation dataset enables us to better understand the effec-
tiveness of our work in practical applications. The distribution of
the dataset is presented in Table 1, which indicates that the propor-
tion of normal and abnormal samples is significantly imbalanced,
which is consistent with the distribution of the number of abnormal
samples in the actual run.

Regarding the training dataset, we utilized the approach outlined
in Algorithm 1 to process a variety of internal game screenshots
(which did not intersect with the evaluation dataset) that were
gathered by the QA team over an extended period of time, allowing
us to obtain synthetic anomaly images. Both Text Overlap and Text
Overstep were utilized, and the resulting training dataset consisted
of samples of whole page screenshots that were generated via the
synthesis algorithm, with a learning rate of 1e-3 and a batch size
of 128 used for YOLOX model training. Additionally, we cropped
several normal and abnormal text areas from this dataset in order
to further train the text overlap classification model, which utilized
a learning rate of 1e-5 and a batch size of 128. The quantity and
distribution of the datasets can be seen in Table 2. Both text overlap
and text overstep use 10000 game screenshots with generated text
anomalies as training set, and the ViT classifier for text overlap uses
13800 generated text overlap images and 6900 normal text images
as the training set.

Evaluation Metrics. To evaluate the effectiveness of our detection
methods, we use four types of evaluation metrics. Three of them
are commonly used metrics of image classification in the literature
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Glitch Type YOLOX ViT Normal ViT Abnormal
Text Overlap 10000 13800 6900
Text Overstep 10000 N/A N/A

Table 2: Training Data Distribution

and we introduce an additional error rate as summarized below.
We refer to glitch images as positive samples.

Accuracy reflects the models ability to make correct decisions
on the test set. The model accuracy is calculated as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
where a TP (true positive) is a positive outcome that is also predicted
correctly by the model to be positive and a TN (true negative) is a
negative outcome that is also predicted correctly by the model to
be negative. On the other hand, an FP (false positive) is a negative
outcome but predicted to be positive and an FN (false negative) is a
positive outcome but predicted to be negative. The more correct
samples the model predicts, the higher accuracy value it will have.

Precision is the proportion of the correct samples predicted
as glitch (TP) among all samples predicted as glitch. The model
precision is calculated as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
This can represent the feelings of use when reviewing manually
suspected problems.

Recall indicates the proportion of correct samples predicted as
glitch among all ground truth glitch samples and calculated as

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
This metric reflects the ability to spot real GUI glitches.

Error rate (ER) is designed by ourselves, which indicates the
proportion of error samples predicted as glitch (FP) in all normal
images and calculated as

𝐸𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
Because of the imbalance of our evaluation dataset, which is similar
to the real-world situation, we need ER as the metric for reflecting
the effect of FP in real application.

Comparison. After studying and analyzing others’ work [12,
31, 32, 45, 46, 53], text glitches related detection is mentioned in
GLIB [12] and OwlEyes [32, 53]. OwlEyes and GLIB are two tools
focusing mainly on the detection of GUI glitches. Since OwlEyes
does not open source their model and the application scenario is
a non-game application, we only do a comparison of text glitches
GLIB with 𝐴𝐺3 on the evaluation metrics mentioned above. Also,
for text overlap detection, we will evaluate the improvement of the
classification module on the detection effect.

Results And Analysis. The experimental result for text glitches
are shown in the table 3 and 4. From the results, we can see that
𝐴𝐺3 achieves the best results in all four metrics and is not affected
by the imbalanced distribution of normal and abnormal images.
Meanwhile, the precision and recall of GLIB on multilingual text
glitches is very low. The reason for this is that the magnitude of

(a) Shooter Game (b) Action RPG Game

Figure 7: The screenshots of the two games

text glitches in GLIB’s anomaly synthesis is small (2%) and differs
significantly from the form of text glitches in multilingual scenarios.

Also, from the results, the addition of the classification model
to the text overlap detection greatly improves the precision of
the model while keeping the other metrics stable. Because the
introduction of the posterior classification model does filter out
many anomalous sample regions that are incorrectly recalled.

We present more detection examples as shown in Figure 6.

4.2 RQ2. Intelligent Traversal Effectiveness
Experiment Design. To measure the traversal effectiveness, tech-

niques for ordinary apps usually use code or activity coverage as
the criteria. However, code coverage requires access to the source
code, and the game app is rendered using the game engine and
does not distinguish between activities. Therefore, these coverage
metrics are not suitable in our case. Moreover, the goal of our tool is
to support multilingual game text glitches detection, so we are more
concerned with how well the game traversal algorithm covers the
text resources. Therefore, a new coverage metric, Text-Coverage
is proposed in this paper. We apply 𝐴𝐺3 on two popular games in
different languages: Shooter Game and Action RPG Game. Shooter
Game is a first-person shooter (FPS) game, while Action RPG Game
is an action-adventure game. Both of them are complex and large
games developed using Unity 3D. The running time setting for a
game traversal is 24 hours, and the resolution is (2400, 1080, 3).
Figure 7 depicts the example screenshots of the two games.

EvaluationMetics. The Text-Coverage can be used tomeasure the
degree of text coverage of the game intelligent traversal algorithm,
and it is defined as:

𝑇𝐶 =
𝑘

𝑛

where 𝑛 is the number of deduplicated text terms contained in
the language pack (LP in short) of a game and 𝑘 represents the
number of matching LP terms found during Intelligent Traversal.
The LP is maintained and provided by the game development team,
which contains all the text terms in the game, and will also contain
some redundant terms, such as: discarded words from old versions
of the game, special triggered terms, etc. The partial terms of the
LP for the Action RPG Game in English is shown in Table 5.

Before calculating the Text-Coverage achieved by Intelligent
Traversal on a game, it is necessary to record the whole traversal
process and split the frames. According to the adjacent operation
time interval, we set the frame rate to 2fps. Therefore, we can
obtain all the screenshots in the traversal process, and put them
through the OCR engine to get all the traversed terms. The 𝑇𝐶 is
calculated mainly by the Length Adaptive Levenshtein Distance to
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Model Precision Recall Accuracy Error Rate Distribution (Normal/Glitch)
GLIB 14.29% 7.27% 95.62% 85.71% 1658/55

𝐴𝐺3 w/o ViT 31.45% 90.91% 94.30% 68.55% 1658/55
𝐴𝐺3 94.34% 90.91% 99.60% 5.66% 1658/55

Table 3: Text Overlap Results

Model Precision Recall Accuracy Error Rate Distribution (Normal/Glitch)
GLIB 4.00% 0.35% 84.02% 96.00% 1658/288
𝐴𝐺3 81.03% 97.92% 96.40% 18.97% 1658/288

Table 4: Text Overstep Results

Term
Character pre-creation phase. Unable to enter games.
Invalid order.
PERSISTENCE FAILED
Insufficient items.
User or target does not meet the requirement.
Reached item usage limit.
This invite has expired.
Unable to continue upgrading.
Please bind cashback character first.
The target has been banned. Cannot use this feature.
They are too far away
Currently on interaction invitation cooldown
No mount selected to ride
Deliver
You guys took so long!
Let’s go help her!
Here, it’s done. Try it on!
The ship is docked!
What is this letter on the floor?
This... this is...?!

Table 5: Partial LP of Action RPG Game in English

match traversal terms and LP terms, so as to obtain the number of
matching terms 𝑘 . The pseudo code is shown in algorithm 2.

Results and analysis. Due to the large manpower requirement for
a full collection of game LP, we conduct Text-Coverage statistics for
only 2 games in 3 languages. Also Intelligent Traversal is compared
with Random Traversal (Randomly click on the detected buttons
within the game app), and the experimental results are listed in
Table 6. We can see that Intelligent Traversal can effectively sup-
port traversal of multilingual games and the Text Coverage of the
Intelligent Traversal is 15% more than Random Traversal in all 3
game traversals. Figure 8 shows the Text-Coverage achieved by
Intelligent Traversal and Random Traversal on the Action RPG
Game in English, Shooter Game in Spanish and Shooter Game in
Portuguese respectively. As the traversal proceeds, our Intelligent
Traversal (red) is continuously exploring new regions and covering
more terms, exceeding the results of the Random Traversal (green)
in all 3 languages for both games. Figure 8 also indicates that 24
hours of traversal time is sufficient and that continuing to extend
the traversal time will not cover a larger amount of new terms.

Algorithm 2 Get Text-Coverage
Input: Deduplicate LP’s terms 𝐿𝑃𝑇𝑠 , Deduplicate traversal terms

𝑇𝑇𝑠

1: 𝑛 ← number of 𝐿𝑃𝑇𝑠;
2: obtain [𝐿𝑃𝑇𝑠1, 𝐿𝑃𝑇𝑠2, 𝐿𝑃𝑇𝑠3] which is divided according to the

length of an term in 𝐿𝑃𝑇𝑠 , the length range are: (0,6],(6,15],(15,
+∞) separately;

3: obtain [𝑇𝑇𝑠1,𝑇𝑇𝑠2,𝑇𝑇𝑠3] which is divided according to the
length of an term in 𝑇𝑇𝑠 , the length range are: (0,6],(6,15],(15,
+∞) separately;

4: set distance threshold of the first length range 𝑡ℎ𝑟𝑒𝑠1 = 0.75;
5: set distance threshold of the second length range 𝑡ℎ𝑟𝑒𝑠2 = 0.7;
6: set distance threshold of the third length range 𝑡ℎ𝑟𝑒𝑠3 = 0.6;
7: 𝐿𝐷 ← Levenshtein Distance [59];
8: set current number of matching terms 𝑘 = 0;
9: for 𝑖 ← 0 𝑡𝑜 3 do
10: for 𝐿𝑃𝑇 in 𝐿𝑃𝑇𝑠𝑖 do
11: for 𝑇𝑇 in 𝑇𝑇𝑠𝑖 do
12: 𝑑 = 𝐿𝐷 (𝐿𝑃𝑇, 𝑇𝑇 )
13: if 𝑑 ≤ 𝑡ℎ𝑟𝑒𝑠𝑖 then
14: 𝑘 + = 1
15: Break
16: end if
17: end for
18: end for
19: end for
Output: Text-Coverage: 𝑇𝐶 = 𝑘

𝑛

Game Language 𝐴𝐺3 Random Traversal
Action RPG Game English 25.1% 4.7%
Shooter Game Spanish 42.5% 27.6%
Shooter Game Portuguese 44.4% 26.8%

Table 6: Text-Coverage

4.3 RQ3. Industry Deployment Study
In industrial game testing, testers are always concerned with the
overhead created by the testing method and when deploying 𝐴𝐺3,
there are two main concerns: (a) How much additional memory is
required to support the test procedures? (b) How is the execution
speed affected during runtime?

On the game side, there is no memory overhead because 𝐴𝐺3

only relies on screenshots of the game and all computer vision
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(a) Action RPG Game in English (b) Shooter Game in Spanish (c) Shooter Game in Portuguese

Figure 8: The Text-Coverage Follow Game Running Time.

based services are used by an external process. When testing is
enabled, execution of the game is affected in two aspects: (1) the
transmission of screenshots to the host device, (2) the resource used
by processes of data analysis, storage and decision-making. For
(1), the average time spent on capturing screenshots and sending
screenshot is about 0.2s, and the resolution of the mobile has no
effect on the time consumed. For (2), the average time consumption
of game scene classification GUI detection is about 0.5s, and the av-
erage time consumption of the OCR engine is about 0.6s, and these
three intelligent services are processed in parallel, so the overall
time consumption of this intelligent decision-making process is
approximately 0.6s. Combining the time-consuming operation of
the Android terminal and the time-consuming intelligent decision-
making, the time interval between adjacent automatic operations
of 𝐴𝐺3 is about 1 second, that is, the tool can complete 86,400 op-
erations in one day, which can basically cover the overall traversal
of an ordinary game.

In terms of industrial deployment, 𝐴𝐺3 has been serving several
game studios within Company A for two years.The total number of
games tested so far is 27. The total number of bugs found by the tool
and confirmed by the developer teams is 2790. Some of the real bugs
found by𝐴𝐺3 are in 9. For the ease of observation, we have zoomed
in the anomaly region. Based on our framework, quality assurance
teams have produced 74multilingual reports of the game. According
to the statistics provided by them, it used to take 12 man-days to
produce one report without 𝐴𝐺3 but with our tool, only 1 simple
testing configuration is required and a report can be automated
generated a day later.Through these results, we conclude that 𝐴𝐺3

can be well used in real industrial applications to identify problems
and significantly reduce the manpower consumption caused by
multilingual game testing.

5 DISCUSSION & LESSONS LEARNED
In this section, we discuss lessons learned and practical experience
gained from the design, implementation and deployment of 𝐴𝐺3

in the industrial environment.

Multilingual game automation tool is important in real produc-
tion. Our long-term data analysis by the quality assurance team
concludes that text glitch issues in multilingual games are more
frequent than in monolingual games and typical mobile apps. In
real practice, the labor cost consumed in discovering these prob-
lems is very large without automated tools. A considerable number
of multilingual text glitches can be found and intercepted by 𝐴𝐺3

(a) Real Text Overlap Bug (b) Real Text Overlap Bug

(c) Real Text Overstep Bug (d) Real Text Overstep Bug

Figure 9: Examples of Real Bug Found by 𝐴𝐺3

before they are introduced to end users and the tool can signifi-
cantly reduce the manpower in this job. In addition, the vision-only
technique makes the automated testing process less costly to get
started because it does not require code instrumentation and have
no dependency on certain devices and platforms.

Synthetic data is critical in UI glitch detection. The long-tail distri-
bution problem[60] is a very common issue in UI defect detection
tasks. The academic community has proposed many approaches
to solve the long-tailed machine learning problem. Algorithm-
focused approaches include few-shot learning, zero-shot learning
and adding some bias to the loss function. There are also solutions
start from the perspective of the data, such as resampling, down-
sampling, data augmentation, etc. Although these methods have
achieved good results in the literature, in practice, it is usually diffi-
cult to achieve the desired practical results. From our work, as well
as the work of GLIB [12] and OwlEyes [32, 53], we can see that
data synthesis is still a very important step in actual production.
Moreover, data synthesis requires a deep understanding of the data,
which emphasizes the importance of data collection. Only when
the synthesized data is close enough to the real anomaly, we can
get better detection results.

Understanding the actual application scenario is more important
than the optimizing algorithm itself. In industry, understanding real-
world application scenarios can greatly reduce the cost of deploying
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tools and improve the efficiency of industrial deployment. For ex-
ample, the design of the tool should take into account the actual
users and the use environment. 𝐴𝐺3, which starts the automatic
traversal of the game with simple configuration, is built into a
Python package with minimum dependencies. It can greatly reduce
the learning and configuration cost of game testers and facilitates
testers to extend 𝐴𝐺3 to their existing test framework.

Algorithm optimization also needs to take into account real busi-
ness scenarios, such as the design of key indicators and the direction
of algorithm optimization. For example, in order to meet the needs
of multilingual text glitch detection, we proposed a novel coverage
metrics, text coverage to measure the effectiveness of the game
traversal strategy. Moreover, our text glitch detection algorithm
pays more attention to the recall rate, rather than balancing the
precision and recall at the same time. Because in the text glitch
detection task, the business requires as many uncovered bugs as
possible, for the optimal user experience, and false positives can
be easily removed from the test report manually. In this sense, we
focused more on improving the recall rate of the algorithm, so that
even if the precision rate of our initial version of the detection
algorithm was only about 30%, many bugs can be found in time
before they are introduced to the players.

6 RELATEDWORK
6.1 GUI Testing
Automated testing is critical to the continuous delivery and con-
tinuous integration. It reduces testing time and human effort and
effectively avoids testing errors caused by testers’ inertial think-
ing. In recent years, research related to automated GUI testing is
emerging rapidly [2]. The most important part of GUI testing is the
design traversal algorithms. Currently, GUI traversal algorithms
are mainly categorized into random, model-based, search-based
and machine learning based techniques.

a) Random GUI Testing: Android Monkey [19] is the state-of-the-
practice GUI testing tool that randomly performs actions available
on the current GUI page. Based on empirical evaluation of open
source applications [15] and commercial applications [57], Monkey
is able to outperform some model-based tools in terms of coverage
achieved and app crashes uncovered.

b) Model-based GUI testing: Model or search-based techniques
are among the most popular traversal algorithms at present [27].
Model-based tools use predefined GUI model representations to
guide action execution [6, 29]. Instead of using a fixed model, [25]
dynamically switches between coarse and fine levels of GUI abstrac-
tion. [51] introduces a two-stagemethod involving construction of a
finite-state model of weighted GUI exploration and Gibbs sampling
of probabilistic models through iterative mutation.

c) Search-based GUI testing: A Pareto multi-objective approach
through genetic evolution is used [36] for search-based testing.
Record and Replay [20] by dumping and loading the state of the
entire emulator in certain states to improve evolutionary efficiency.

d) Machine Learning based GUI testing: Machine learning based
methods can be divided into deep learning and reinforcement learn-
ing. A deep learning approach to learning from human interactions
is proposed [30], which suffers from heavy model and low efficiency
problems. Reinforcement learning techniques are used to promote

the effect of testing [1, 56] but not suitable to learn from exist-
ing user actions. By combining deep learning and reinforcement
learning, [17, 49] explore functionalities that can only be accessed
through a specific sequence of actions in Android GUI testing.

Besides these techniques that focus on exploring standard
apps, [31, 45, 46] are based on reinforcement learning and imi-
tation learning for playing against specific objects in the game.
As for intelligent traversal for general games, there is no directly
related work, to the best of our knowledge.

6.2 GUI Glitch Detection
GUI search [5, 7, 8, 10, 11, 48, 61] and GUI code generation [3, 9,
13, 14, 40] are studied in the literature. For example, [41] checks
whether the GUI displayed violates the design by image similarity
calculation based on computer vision, and its following work [44]
further detects and summarizes GUI changes in evolving apps.

In terms of specific GUI issue detection, some work focuses
on GUI rendering delay [22] and image loading [28]. GUI glitch
detection algorithms based on a deep learning model are also pro-
posed [12, 32, 53]. While they all mention text glitch detection
support, they do not design model specifically for the character-
istics of text glitch in game screenshot, but just uniformly use a
CNN binary classification model to detect multiple types of GUI
anomalous images.

7 CONCLUSION
In this paper, we have presented 𝐴𝐺3, an automated testing tool
for text glitches in multilingual games that includes game traver-
sal, text glitch detection and report generation. As an image-based
game testing tool, 𝐴𝐺3 does not rely on intrusive code instrumen-
tation but is shipped in a ready-to-use testing tool with minimal
configuration required. The effectiveness of 𝐴𝐺3 is demonstrated
through experiments and daily industrial use. In sum, this paper
makes the following contributions:

Game traversal We designed an intelligent traversal strategy,
with more than 15% test coverage compared with the baseline.

Text glitch detection A novel test glitch detection algorithm
based on deep learning is proposed after analyzing characteristics
of text glitches in games. The experiment shows that 𝐴𝐺3 is able
to achieve 90% recall rate which means that it can spot most of
real-world multilingual text glitch issues in games. Through error
and precision rate, we conclude that suspected problems can be
filtered out from the large number of original screenshots to a great
extent, minimizing the workload of test engineers.

Practical application As of now, 𝐴𝐺3 has been integrated into
internal games. A total of 74 multilingual games have been tested
by 𝐴𝐺3 and over 2, 790 confirmed bugs are found. Meanwhile, the
labor time consumption to produce one report was reduced from
12 man-days to 1 man-days.
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