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ABSTRACT 
Model-based test (MBT) generation techniques for automated 
GUI testing are of great value for app testing. Existing GUI 
model-based testing tools may fall into cyclic operations and run 
out of resources, when applied to apps with industrial complexity 
and scalability. In this work, we present a multi-agent GUI MBT 
system named Fastbot. Fastbot performs model construction on 
the server end. It applies multi-agent collaboration mechanism to 
speed up the model construction procedure. The proposed 
approach was applied on more than 20 applications from 
Bytedance with more than 1500 million monthly active users. 
Higher code coverage in less testing time is achieved with 
comparison of three other automated testing tools including 
Droidbot, Humanoid and Android Monkey. 

CCS CONCEPTS 
• Software and its engineering → Software testing and
debugging; Model-based software engineering

KEYWORDS 
Model-based GUI testing, dynamic DAG exploration, multi-agent 
collaboration, automatic testing, traversal algorithm 

1 Introduction 
Nowadays, functionality of apps is getting increasingly complex. 
The app with most robustness will have better competiveness in  
the app stores. Therefore, automating test generation (ATG) for 
apps becomes an important research direction.  
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GUI-based ATG techniques have been widely studied, such as 
model-based testing, search-based testing, coverage-guided 
fuzzing and symbolic execution. Unlike the ATG methods based 
on code analysis which require full control flow graph generated 
from source code, testing based on GUI has the ability to build 
app model based on the UI information. The state-of-the-art tools 
includes SAPIENZ [1], which applies random fuzzing, systematic 
and search-based exploration; DYNODROID [2], which views the 
app as sequences of events and generates relevant, intelligent 
inputs; other popular tools include DroidMate [3], PUMA and 
Android Monkey by Google.  
Particularly, model based testing (MBT) in ATG obtains great 
advantage for better reusability. Droidbot [4] is one of the cut-
edge GUI-based MBT tools, which performs on-the-fly model-
based testing with graph exploration algorithms. Humanoid [5] 
brought by Peking University brought up the new strategy of 
guiding exploration event by user-behaviors. Mostly, model-based 
GUI tests are based on 2 artifacts: The Finite State Machine (FSM) 
which describes all possible testing paths, and the operational 
profiles which describe the transition from one state to another.  
However, there are two disadvantages for the traditional model-
based methods, when applied to apps with industrial complexity 
and scalability. Firstly, it is easy to fall into cyclic operations in 
similar pages using the "GUI changed" as the exploration strategy 
for the state judgement. By applying DFS and BFS algorithm in 
exploration process, these tools including DROIDBOT may keep 
trapping in same scenarios which severely limits the activity 
coverage. While for Humanoid, the accessibility of user-behavior 
data becomes largest obstacle. Secondly, the rapidly expanding 
model will take up the memory of the mobile devices.  
To deal with the above-mentioned problems, we proposed Fastbot, 
a Model-based Automatic Test Generation system, where we 
achieved multi-client collaboration model construction mechanism, 
and applied algorithms based on UCB algorithm [6] and 
reinforcement learning to achieve better exploration capability. 
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2 Design and Implementation 

2.1 Fastbot Workflow 
As mentioned above, the memory and calculation capability of 
mobile devices have become the main limitation for model-based 
GUI testing. By applying distributed computing system, Fastbot 
moves the model-related computationally expensive part onto 
server end and only keeps UI information collection and action 
injection job on client end. The workflow is shown in Figure1.  

 

Figure 1: Fastbot System Workflow 

The Fastbot system supports multiple app testing tasks working 
simultaneously without affecting each other. For every single task, 
the App Under Test (AUT) and user-defined configurations will 
be deployed on multiple mobile devices. On each device, a 
Fastbot client will take charge of UI recognition and event 
injection work. Obtained UI info of current state will be sent to 
server through the socket agents. Correspondingly, on server end 
there are agents analyzing the received UI info, formatting this 
info into a so-called state as input of the algorithms in AI-core. 
Each agent will select next event based on their input state, 
assigned algorithms, and the model info, meanwhile collaborate to 
construct a static model stored in server memory. Selected events 
will be transferred back to client side for execution, then new UI-
info will be captured and sent back to server again. In this process, 
data of crash info, code coverage and effective paths will be 
collected for data analyzing, case replay and test generation. 

2.2 Fastbot Model Description 
By defining state as abstraction of UI info on current page and 
actions as the events to take, a directed acyclic graph is 
constructed from the event trace of clients with state as graph 
nodes and actions as edges. The model in Fastbot is based on this 
DAG. The left part in Figure 2 shows a brief example of our 
model. The arrow dashed lines represent actions that directs and 
connects the states shown in circles. With multi-agent 
collaborating, our composite model is shown in the right part of 
Figure 2, where each color represents the traversal path of a 
unique agent. 
Defining states with fine granularity is a challenging job. Without 
any abstraction on GUI info, the amount of states will explode 

sharply resulting in OOM problem on server for the reason of 
unlimited Feed Pages and so on. Through our work, the state 
abstraction function defined by Activity name, Action Type and 
widgets distribution obtained from flattened GUI tree structure is 
observed to have best performance. 

 

Figure 2: DAG Model 

2.3 Algorithms in AI core 
Traditional traversal algorithms based on DFS and BFS have their 
limitation on a dynamic DAG model built on dynamic app rather 
than native app, where duplicated path is not promised to lead to 
constant destination, for the reason of the disturb from forever-
changing contents in Feed Pages. Here, we present the following 
better fitting algorithms in this scenario.  
Aiming to cover more actions in every state, we define the priority 
of a state as the total value of actions in this state, where value of 
action is determined by action type and action visited tag. States 
with higher priority are of more value to be visited again. 
For greedy algorithm that always distributes actions with max 
target priority, the actions leading to Feed Page state that cannot 
be reached again will trap the agent in infinite loops.  
Our first algorithm is based on one-step UCB equation (upper 
confidence bound) [6] to balance exploration and exploitation. In 
cases where state still has unvisited actions, the action priority 
simply equals previously defined action value. Otherwise, the 
priority of action is denoted as UCB value calculated from 
Equation 1 with corresponding illustration in Figure 3.  

(1)

 

Figure 3: Definition of One-Step UCB 

One of the drawbacks of the above-mentioned strategy is that it 
only calculates the UCB value within one step, while states hiding 
several steps behind may have higher value to be visited. The n-
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step UCB algorithm is brought up as an optimization to overcome 
this drawback. Instead of the using priority of action’s target state 
in UCB equation, we use accumulation of all the target priority 
multiplied by discount factor  in the following n steps as Pt in 
Equation 1. The n-step UCB value of Action is given in Equation 
2. However, this algorithm requires traversal in the following n 
steps and demands an exponential time complexity. A gradually-
increasing step number n fits best in this scenario. 

(2)

The algorithm is described in the following pseudocode: 
Algorithm 1: Action selection with UCB on DAG model 

While test not finished: 
Receive GUI-Tree from clients 
Current state  
Update model with current state and previous movement 

For actions in current state: 
Calculate one-step or n-step UCB value of actions  

Select action based on UCB value 
Mark selected action as visited, update action value and state 
priority 

      Send Action back to clients for execution 
 
Still, the information beyond n steps is not fully utilized for the 
current decision, since backpropagation is not applicable on DAG. 
Another algorithm named MTree is designed inspired by Monte-
Carolo Search Tree Algorithm applied in AlphaGo [7], where we 
use tree structure in addition of DAG as our model. Each tree 
node represents one state, and the target states leading by the 
actions in tree node are added as child nodes. The actions leading 
to a previous visited state is added as step child to prevent cycle. 
An activity list is stored in every tree node suggesting the 
following reachable activities. When new activities are discovered, 
a backpropagation process from current node to the root will be 
applied, updating the activity list in child nodes. An example of 
MTree structure is shown in Figure 4. Each color represents a 
unique activity. Starting from State 0 as root node, the tree 
structure expands downward during the process of exploration. 
Action 5 shown in dashed line leads back to the visited Root Node 
and forms a cycle; thus, we add State 5 as step child node. Step 
children won’t involve in the backpropagation or action selection 
process. The use of them is to navigate back when all the 
following children are saturated. Correspondingly, in the action 
selection part, exploration for unvisited actions is still the main 
choice; for the visited actions, we have the UCB equation for 
actions leading to child nodes shown in Equation 3, where Vc and 
Vp means visit count of child node and parent node. 

 
Algorithm 2: MTree Algorithm  

… 
Current state  
Build tree node N from current state 
If N not in MTree: 
 Add N as previous state node’s child 

 Update reachable activity list from current node to root 

Else:  
 Add N as step child 
For unvisited actions and actions pointing to child nodes: 
 Calculate UCB value of target node by action  
If no children and no unvisited actions: 

Select action from step children 
Else: 
 Select action according to UCB value 
Send Action back to clients for execution 

 

 

Figure 4: An Example of MTree 

 (3) 

Q-Learning algorithm capturing action selection feature on DAG 
model also brought smart navigation. In this algorithm, Q value is 
calculated for every state-action pair with forward actions gets 
positive reward based on a state difference function, while actions 
leading to visited states will get negative rewards based on visit 
count. Thus, agent learns to avoid infinite loop and discover new 
states. N-step Q-learning with UCB is applied for optimization. 

 
Algorithm 3: Q-learning with State-Diff Reward Function   

… 
Update model based on current state and previous 

movement 
Reward  

  
For actions in current state: 
  Get UCB of action based on Q(current State, action)  
Select action based on UCB value 
… 

3 Results 
Fastbot has already been integrated into Bytedance testing 
framework, serving more than 20 applications as the main 
stability and compatibility testing tool. Over 300 daily-build tasks 
are scheduled, applied with various customized configuration to 
match the demand from every product line. Around 5,000 crashes 
are being exposed by Fastbot every day, among which more than 
100 crashes are newly discovered. The crash info is reported to 
our bug system and assigned to related developers for 

95



 

 
 

investigation. With this tool, the culprit patch is assumed to be 
found and fixed before app released. 
The following experimental evaluation includes code coverage 
and activity coverage data on one of our app named Toutiao. 
Table 1 shows one-hour and three-hour testing data on a single 
device. Comparing with the popular traversal testing tools 
including Monkey, Droidbot and Humanoid, Fastbot achieved a 
much higher coverage performance.  

Table 1: Coverage Comparison 
Moreover, Fastbot’s multi-device collaboration in client/server 
pattern dramatically enhances the exploration capability. Figure 5 
shows the activity coverage performance of Fastbot working on 1, 
3, 20 and 50 devices. Obviously, multiple devices collaboration 
brings a higher coverage rate and faster exploartion speed. Up to 
100 devices collaborating on a single model for 50 hours are 
supported by our distributed system on server end, resulting in a 
47.88% activity coverage, without triggering OOM problem or 
slowing down the action decision speed. As Table2 shows, three 
clients collaboration by Fastbot achieved a 84% activity coverage 
enchancement compared to single device test, while for Droidbot 
and Humanoid, the enhancement from one device to three devices 
is only 20.41% and 24.97%, and for Monkey is 45.79%.   

Table 2: Effect of device number 

 

Figure 5: Coverage Comparison on multiple clients 

Figure 6 compares the traversing capability by the four above-
mentioned algorithms, together with traditional DFS and Random 

algorithm. Each test is deployed with 20 devices. As shown in the 
figure, DFS agent stuck soon in the internal loops, and activity 
coverage stops increasing. Random Agent has better performance 
in the dynamic DAG circumstances, achieving around 26% 
coverage. One-step UCB algorithm possesses best exploration 
speed at the early stage, while the potential to discover activities 
hidden behind complex path becomes its weakness. On the 
contrary, coverage rate of n-step UCB agent grows slower for the 
reason of (n-1) repeated actions it needs to cover before reaching 
target state, but in later periods it demonstrates better exploration 
capability for the deeper inception. Performance of DQN agent is 
unstable. It has upper-limit better than n-step agent, and in the 
meantime, requires less computation resources. Nevertheless, the 
performance is severely affected by the uncontrollable action 
choices in early exploration stage. Among our tests, the MTree 
Agent exhibits best overall performance.  

 

Figure 6: Algorithm Coverage Comparison 
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Metrics  Droidbot  Monkey  Humanoid  Fastbot  
Activity Coverage/1h  4.31% —— 4.33% 16.14% 
Code Coverage/1h  8.33% 9.79% 8.73% 19.00% 
Activity Coverage/3h 6.10% —— 6.34% 18.07% 
Code Coverage/3h 11.33% 14.70% 12.05% 23.00% 

Code Coverage/1h  Droidbot  Monkey  Humanoid  Fastbot  

One Device  8.33% 9.79% 8.73% 19.00% 
Three Devices  10.03% 14.28% 10.91% 35.00% 
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