Real-World Clone-Detection in Go

Qinyun Wu

ByteDance Ltd.

Beijing, China
wuqinyun@bytedance.com

ACM Reference Format:

Qinyun Wu, Huan Song, and Ping Yang. 2022. Real-World Clone-Detection
in Go. In 19th International Conference on Mining Software Repositories (MSR
"22), May 23-24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3524842.3528510

1 INTRODUCTION

In the early stage of development, developers copied internal code
snippets to enhance developing efficiency. With the rapid growth
of Bytedance, similar or equivalent code snippets across different
repositories or different product lines’ codebases would potentially
increase the cost of maintenance and distribute vulnerable code
snippets. With the application of Clone-Detection, there are multi-
ple well-established tools or techniques used for detecting similar
code snippets in Java, JavaScript, Objective C and etc [1, 3]. We
could hardly find similar tools available for Go, a widely-used pro-
gramming language in the field of server development, especially at
Bytedance. For the lack of public and labeled datasets, we utilized a
great number of code snippets in Bytedance’s codebase and trained
an unsupervised model to propose GoCopyCatch (GoCC), a tool
and technique for Clone-Detection in Go.

Bytedance mainly applies GoCC in the following scenarios. First,
Bytedance maintains a large amount of official or highly recom-
mended repositories within the organization, providing developers
with high-quality and functional code snippets. GoCC enables de-
velopers to check whether the newly created methods could be
replaced by existing code snippets.The replacement of high-quality
code snippets highly improves the reliability and safety of the code-
base within the company. Second, developers would potentially
copy code snippets with vulnerability or indetectable bugs. Once
the vulnerability has been exposed, GoCC is available for local-
izing other copied code snippets, reducing the risk of recurrent
exposure of the same bug and improving the overall quality of
the development. Third, GoCC is used to establish a measurement,
calculating the percentage of duplicate codes written by each de-
veloper. The measurement aims to reduce redundant code snippets
and encourage developers to make more original contributions.

2 OUR APPROACH

The overall process of GoCC is shown in Figure 1. GoCC is com-
posed of training and detection stages. In the training stage, we
collected 2800+ Golang repositories from the internal codebase and
took advantage of a self-designed parsing tool based on ANTLR [2]
to preprocess code snippets.Then, we de-duplicated and shuffled
all the methods, taking them as inputs to train the Fasttext model

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA
© 2022

ACM ISBN 978-1-4503-9303-4/22/05...$15.00
https://doi.org/10.1145/3524842.3528510

Huan Song

ByteDance Ltd.

Beijing, China
songhuan.514@bytedance.com

Ping Yang
ByteDance Ltd.
Beijing, China

yangping.cser@bytedance.com

specified for Golang. In the code clone detection stage, GoCC is
available for both methods and repositories clone detection. Given
a method or a repository, GoCC preprocessed it by parsing, stan-
dardizing, and vectorizing through the pre-trained FastText model.
After calculating cosine similarity between the target vector and
each of the vectors derived from the internal codebase, GoCC would
recall top-ranked similar pairs based on a given threshold.

Code Clone Detection

™, FastText

® »Go Func Pairs

Figure 1: The overall process of GoCC

3 APPLICATION

We utilized GoCC to measure the code duplication rate both within
and across repositories at Bytedance. The code duplication rate
is calculated as follows: The result generated from 2800+ reposi-
tories (Figure 2) shows that 29.35 percent of repositories have a
relatively high code duplication rate within repositories and less
than one percent of repositories have high code duplication rate
across repositories (Figure 3), providing developers with insights to
reduce the duplicates within repositories and improve the quality
of development.

Figure 2: The code duplica- Figure 3: The code dupli-
tion rate within reposito- cation rate across reposito-
ries ries

Nowadays, GoCC is improving the efficiency and the effective-
ness of server development at Bytedance by recommending high
quality code snippets and removing redundant works. In the near
future, GoCC has the potential to be a powerful developer tool,
identifying similar or equivalent code snippets in the corpus of Go
language and helping developers to program in a concise and high
quality way.

https://doi.org/10.1145/3524842.3528510
https://doi.org/10.1145/3524842.3528510

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

REFERENCES

[1] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.

2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
software engineering 33, 9 (2007), 577-591.

Qinyun Wu, Huan Song, and Ping Yang

[2] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL (k) parser
generator. Software: Practice and Experience 25, 7 (1995), 789-810.
[3] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone

detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165-1199.

	1 Introduction
	2 Our Approach
	3 Application
	References

