
NxtUnit: Automated Unit Test Generation for Go
Siwei Wang

siwei.wang@bytedance.com
Bytedance

Mountain View, USA

Xue Mao
maoxue.marissa@bytedance.com

Bytedance
Beijing, China

Ziguang Cao
caoziguang@bytedance.com

Bytedance
Beijing, China

Yujun Gao
gaoyujun@bytedance.com

Bytedance
Beijing, China

Qucheng Shen
qusheng.shen@bytedance.com

Bytedance
Mountan View, USA

Chao Peng
pengchao.x@bytedance.com

Bytedance
Beijing, China

ABSTRACT
Automated test generation has been extensively studied for dy-
namically compiled or typed programming languages like Java
and Python. However, Go, a popular statically compiled and typed
programming language for server application development, has
received limited support from existing tools. To address this gap,
we present NxtUnit, an automatic unit test generation tool for Go
that uses random testing and is well-suited for microservice archi-
tecture. NxtUnit employs a random approach to generate unit tests
quickly, making it ideal for smoke testing and providing quick qual-
ity feedback. It comes with three types of interfaces: an integrated
development environment (IDE) plugin, a command-line interface
(CLI), and a browser-based platform. The plugin and CLI tool allow
engineers to write unit tests more efficiently, while the platform pro-
vides unit test visualization and asynchronous unit test generation.
We evaluated NxtUnit by generating unit tests for 13 open-source
repositories and 500 ByteDance in-house repositories, resulting in
a code coverage of 20.74% for in-house repositories. We conducted
a survey among Bytedance engineers and found that NxtUnit can
save them 48% of the time on writing unit tests. We have made the
CLI tool available at https://github.com/bytedance/nxt_unit.

KEYWORDS
Go, Automated Test Generation
ACM Reference Format:
Siwei Wang, Xue Mao, Ziguang Cao, Yujun Gao, Qucheng Shen, and Chao
Peng. 2023. NxtUnit: Automated Unit Test Generation for Go. In Proceedings
of the International Conference on Evaluation and Assessment in Software
Engineering (EASE ’23), June 14–16, 2023, Oulu, Finland. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3593434.3593443

1 INTRODUCTION
Automated unit test generation has been extensively studied for
decades. Previous research focused on dynamically compiled and
dynamically typed programming languages, e.g. EvoSuite[4] and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0044-6/23/06. . . $15.00
https://doi.org/10.1145/3593434.3593443

Randoop[8] for Java, Pynguin[7] for Python, etc. Search-based test
generation [1] run different test cases thousands of times in a short
period of time. Another approach, exemplified by KLEE[2], employs
dynamic symbols to execute input parameters for the program
under test. However, these methods do not produce well-written,
maintainable unit tests explicitly for developers to use.

Go1 is a rising programming language designed and managed
by Google, featuring built-in concurrency and garbage collection
that make it ideal for building server applications. In 2021, Go was
ranked as the 12th most commonly used programming language2.
At ByteDance, the majority of our server applications are written
in Go.

A dependable and effective method for ensuring the quality of
our Go programs, which serve billions of users, is urgently re-
quired. We have evaluated several tools, such as final-unit3 which
doesn’t support mocking remote procedure calls (RPC)4. Another
option, EvoMaster5, generates system-level test cases for web ap-
plications, but it does not provide native support for RESTful6 and
Thrift7 functions, making it incompatible with our microservice
architecture[10]. In our environment, an ideal test generate tool
should meet 2 requirements: (1) being automated without human
intervention and (2) compatible with the microservice architecture.
Our initial attempt was to use search-based algorithms, but we
encountered two problems. Firstly, Search-based testing requires
numerous iterations [6] during test generation, resulting in a slow
pace of iteration as a result of having to recompile the code after
each modification [5, 9]. Secondly, the computational explosion
problem arises when using the search-based feedback mechanism
for large and complex programs [3].

To address these limitations, we present NxtUnit, an automated
unit test generation tool that employs random testing and alters
input and simulates downstream call output. NxtUnit records asser-
tion values as the ground truth, laying the groundwork for future
regression testing. NxtUnit creates a mixture of mocked outputs
from downstream calls and input parameters for its test scenarios.
Successful tests are retained and adapted to address various por-
tions of the source code. NxtUnit offers three main interfaces: a
server that generates unit tests and provides a web application for

1https://go.dev/
2https://www.tiobe.com/tiobe-index/
3https://github.com/wimspaargaren/final-unit
4https://en.wikipedia.org/wiki/Remote_procedure_call
5https://github.com/EMResearch/EvoMaster
6https://en.wikipedia.org/wiki/Representational_state_transfer
7https://en.wikipedia.org/wiki/Apache_Thrift

https://github.com/bytedance/nxt_unit
https://doi.org/10.1145/3593434.3593443
https://doi.org/10.1145/3593434.3593443
https://go.dev/
https://www.tiobe.com/tiobe-index/
https://github.com/wimspaargaren/final-unit
https://en.wikipedia.org/wiki/Remote_procedure_call
https://github.com/EMResearch/EvoMaster
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Apache_Thrift

EASE ’23, June 14–16, 2023, Oulu, Finland Siwei Wang, Xue Mao, Ziguang Cao, Yujun Gao, Qucheng Shen, and Chao Peng

Figure 1: Workflow of NxtUnit

developers to review tests and their results, an IDE plugin, and a
CLI for developers. NxtUnit is capable of generating either unit
test templates or fully developed unit tests. At ByteDance, NxtUnit
supports hundreds of developers each week.

2 IMPLEMENTATION AND USAGE
2.1 Workflow
Figure 1 illustrates NxtUnit’s workflow. The process starts with
parsing the program’s source code and transforming it into static
single assignment (SSA) form8. The SSA serves as a foundation
for building the call graph (1○ in Figure 1), which links tested
functions to their dependent functions. This information is essential
for NxtUnit when randomly mocking callees while constructing
test cases.

NxtUnit generates intermediate code (2○ in Figure 1) for code
execution. During this stage, NxtUnit populates the template9 with
tested function’s parameters and downstream callees. When execut-
ing the code (3○), NxtUnit runs the code created in 2○ , focusing on
three primary tasks: mutation, assertion generation, and test case
selection. The code produces a designated number of candidates,
regulated by hyperparameters. During the mutation stage, the in-
puts and mocked downstream outputs for each candidate exhibit
differences at runtime. For instance, if there is no default value
established, the int value will be chosen from the range between
the minimum and maximum integers. NxtUnit randomly mocks
downstream calls and assigns different return values. For instance,
if a function has 5 downstream calls, NxtUnit might mock 2 of them
while keeping the other 3 callable.

NxtUnit utilizes Go reflect10, a package in the Go programming
language that facilitates inspection and manipulation of variable

8https://pkg.go.dev/Go.org/x/tools/go/ssa
9A concrete example is available at https://github.com/bytedance/nxt_unit
10https://pkg.go.dev/reflect

structures and values during runtime. This package allows for exam-
ining types, interface values, and other variable properties, as well
as creating and modifying values programmatically. Using Go re-
flect simplifies mutation implementation compared to the go-types
solution11, as it provides more information and a more accessible
interface. For example, Go reflect can accurately obtain a variable’s
alias and the integrated path of the imported package from the alias,
while go-types cannot easily provide this information.

NxtUnit employs suitable strategies to accommodate microser-
vice architectures. For example, it actively searches for instantiated
methods for variables within the tested function. To enhance the
interpretability of generated test cases, NxtUnit applies a set of an-
thropomorphic rules for mutating variables. One such rule involves
constructing the value of rules based on the variable’s name. For
instance, IP addresses in the code are mutated to resemble real IP
addresses, making the test cases more relatable and understandable
in real-world scenarios.

During the assertion generation stage, NxtUnit logs assertion
values as the ground truth, serving as the basis for regression testing.
In cases where generated assertions are flawed, NxtUnit may fail to
produce them. Test case selection is based on code coverage, with
NxtUnit recording each test case’s path and selecting a set of cases
that maximize the test suite’s coverage.

In the end, NxtUnit creates the final test suite (4○ in Figure 1)
by selecting the most comprehensive combination of test cases for
each function. NxtUnit might fail to generate test cases for various
reasons such as compilation errors and test crashes. In the internal
version of NxtUnit, a series of error codes are available to notify
engineers of these issues and assist in identifying bugs within the
programs.

https://pkg.go.dev/Go.org/x/tools/go/ssa
https://github.com/bytedance/nxt_unit
https://pkg.go.dev/reflect

NxtUnit: Automated Unit Test Generation for Go EASE ’23, June 14–16, 2023, Oulu, Finland

Figure 2: Web-based platform. Due to confidentiality reasons, we have obscured some information.

2.2 Usage
NxtUnit offers a user-friendly solution for generating unit tests
in Go projects and comes in three formats: a plugin for popular
Integrated Developing Environments (IDEs) including VScode and
Goland12, a Command Line Interface (CLI), and a webpage-based
platform. By executing a simple command fromCLI, users can easily
initiate the unit test generation process. NxtUnit also boasts addi-
tional features, such as producing test templates and test suites for
entire files. These templates enable users to swiftly write a compre-
hensive set of tests. Furthermore, users have the flexibility to tailor
these templates to their specific requirements by incorporating
project-specific data or functions.

The plugin version works as an interface encapsulating the CLI
version, enabling users to generate unit tests by simply clicking a
button rather than entering commands. The web-platform version
is depicted in Figure 2. The "case" column highlights NxtUnit’s
impact. The "basic" field indicates the number of original test cases
in the repository, while "NxtUnit" refers to the number of test cases
generated by the application in the backend. The platform version
facilitates increased coverage by allowing users to send a merge
request containing all generated tests to the code repository.

3 EVALUATION
The evaluation of NxtUnit was conducted on two sets of candidate
repositories, one set consisting of 500 Bytedance repositories13 and
the other set consisting of 13 highly-starred repositories from the
internet14. The rest of the 100 repositories were not included for the
following reasons: (1) non-maintained repositories were excluded,
(2) repositories with an excessive number of lines of code, such as
kubernetes15, were eliminated, (3) repositories using Go vendor16
were not included as NxtUnit is not compatible with this outdated
package management system, and (4) repositories that could not

11https://github.com/golang/example/blob/master/gotypes/go-types.md
12https://www.jetbrains.com/go/
13Data is not publicly available due to confidentiality reasons.
14https://evanli.github.io/Github-Ranking/Top100/Go.html
15https://github.com/kubernetes/kubernetes
16https://go.dev/ref/mod

be built without satisfying prerequisites. These 13 public reposito-
ries consist of at least 246 functions, indicating that they are not
small projects. No pre-modifications were made to either data set.
NxtUnit was executed for a maximum of 24 hours for both sets
of repositories, using hyperparameters such as a mutation ratio
of 0.2, a maximum struct mutation level of 6, a timeout duration
of 40 seconds, and 4 candidates. The mutation ratio represents
the probability of a variable undergoing mutation. If a variable is
not mutated, it will be assigned its default value based on its data
type. For instance, in Go, the default value for a pointer type is nil.
The maximum struct mutation level denotes the maximum depth
of struct layers that NxtUnit will examine. If the struct layers ex-
ceed this limit, NxtUnit will directly use default values to initialize
the value. The timeout parameter indicates the maximum runtime
during the code execution phase, as the processing time for down-
stream functions can be lengthy when they are not mocked. The
4 candidates refer to the generation of four potential candidates
during each run.

Table 1 showcases the results of the experiment conducted by
NxtUnit on 13 GitHub repositories. "All functions" represents the
total number of functions in the repository. Each function has a
corresponding test suite, which indicates the successfully generated
test suites. "Original test coverage" refers to the coverage before
using NxtUnit. "NxtUnit tests without original test" signifies the
coverage NxtUnit can provide after excluding the original tests.
The "NxtUnit tests with original test" represents the total cover-
age achieved by combining the original tests with those generated
by NxtUnit. The average code coverage for public repositories in-
creased from 44.86% to 50.37%. The coverage improvement results
from NxtUnit generating more tests, thus enhancing the overall test
suite. However, nsq is an exception, as it had no coverage data due to
an unknown program panic 17 when running the tests, but NxtUnit
still generated 594 tested functions out of 621. For Bytedance repos-
itories, the average code coverage increased from 3.48% to 20.74%,
with an average coverage without the original test of 14.1%. Table 1
showcases the success rate and generation time for single functions,
reflecting user experience when using NxtUnit. The success rate for

17Panic is an exception arisen at runtime in Go

https://github.com/golang/example/blob/master/gotypes/go-types.md
https://www.jetbrains.com/go/
https://evanli.github.io/Github-Ranking/Top100/Go.html
https://github.com/kubernetes/kubernetes
https://go.dev/ref/mod

EASE ’23, June 14–16, 2023, Oulu, Finland Siwei Wang, Xue Mao, Ziguang Cao, Yujun Gao, Qucheng Shen, and Chao Peng

Table 1: Github Repositories NxtUnit Experiment

Github
repo

Generated
test suites

All
functions

Original
test coverage (%)

NxtUnit without
original test coverage (%)

NxtUnit plus
original test coverage (%)

Generation duration
per function(s)

cobra 236 246 87.2 25 87.3 1368
consul 84 9503 30.2 3.1 30.2 2395
dive 287 295 39.8 41.4 67.3 6611
drone 1310 1489 51.1 16.8 51.8 9976
echo 425 425 95.2 11 95.5 2354
esbuild 1337 1513 75.8 17.9 80.3 15095
fiber 1538 2382 39.5 37.3 46.8 16075
fzf 23 525 36.1 4.4 36.5 789
gin 132 435 95.1 16.3 95.1 636
gorm 388 391 26.3 13.1 36.1 8672
kit 709 774 80.6 25.3 85 5950

logrus 205 222 7.8 7.6 35.6 614
nsq 594 621 0 0 0 6430

generating a single function was 50% in Bytedance repositories and
73% in public repositories. The generation time was 26 seconds for
Bytedance repositories and 10 seconds for public repositories. The
higher function generation rate and faster generation time in public
repositories can be attributed to their well-maintained nature and
fewer dependencies. However, the coverage in public repositories
is lower than in Bytedance repositories due to the specific mutation
logic for Bytedance variables.

Additionally, we conducted a survey among 20 of our engineers.
They reported that before using NxtUnit, it took them an average of
5 minutes to write a single unit test. Specifically, 4 engineers stated
that their unit test writing time fell within the range of 2-4 minutes.
8 engineers claimed it took them 5 minutes, and the remaining 8
engineers indicated that they needed 6-10 minutes18. The survey
also showed that 9 people claimed that NxtUnit saved them 50% of
their time of writing unit tests, 7 people stated that it saved 60%
- 90% of their time, and 4 people mentioned that the time saved
ranged from 0% to 50%. These results demonstrate that NxtUnit
can significantly reduce the time required for writing tests, saving
engineers an average of 48% in time.

4 CONCLUSION
Go has become popular due to its high performance. NxtUnit,
an automated unit test generation tool for Go, has helped many
Bytedance developers write unit tests more efficiently.We explained
the concept behind NxtUnit and conducted an empirical analysis
of its code generation rate and successful generation rate in both
Bytedance and public repositories. The results show that NxtUnit
has a strong performance. In the future, NxtUnit aims to make unit
tests more readable and improve code coverage, including branch
coverage, with further modifications.

REFERENCES
[1] Arthur Baars, Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil McMinn,

Paolo Tonella, and Tanja Vos. 2011. Symbolic search-based testing. In 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011).
IEEE, 53–62.

18due to space limitations, specific numbers are not listed here

[2] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209–224.

[3] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. 2018. An empirical evaluation of evolutionary algorithms for unit test
suite generation. Information and Software Technology 104 (2018), 207–235.

[4] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[5] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging optimized code
with dynamic deoptimization. In Proceedings of the ACM SIGPLAN 1992 conference
on Programming language design and implementation. 32–43.

[6] Xin Kong, Yen-Lun Chen, Wei Xie, and Xinyu Wu. 2012. A novel paddy field
algorithm based on pattern search method. In 2012 IEEE international conference
on information and automation. IEEE, 686–690.

[7] Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: Automated Unit Test
Generation for Python. 2022 IEEE/ACM 44th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion) (2022), 168–172.

[8] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In 29th International Conference on
Software Engineering (ICSE’07). IEEE, 75–84.

[9] Yohei Ueda and Moriyoshi Ohara. 2017. Performance competitiveness of a
statically compiled language for server-side Web applications. In 2017 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 13–22.

[10] Man Zhang, Andrea Arcuri, Yonggang Li, Kaiming Xue, Zhao Wang, Jian Huo,
and Weiwei Huang. 2022. Fuzzing Microservices In Industry: Experience of
Applying EvoMaster at Meituan. arXiv preprint arXiv:2208.03988 (2022).

	Abstract
	1 Introduction
	2 Implementation and Usage
	2.1 Workflow
	2.2 Usage

	3 Evaluation
	4 Conclusion
	References

