
Beijing Bytedance Network Technology Co., Ltd.
Tianqin Cai

 Product RD & Infrastructure
 Bytedance Network Technology

 Beijing, China
caitianqin@bytedance.com

Zhao Zhang
 Product RD & Infrastructure

 Bytedance Network Technology
 Beijing, China

zhangzhao.a@bytedance.com

Ping Yang
 Product RD & Infrastructure

 Bytedance Network Technology
 Beijing, China

yangping.cser@bytedance.com

ABSTRACT
Model-based test (MBT) generation techniques for automated
GUI testing are of great value for app testing. Existing GUI
model-based testing tools may fall into cyclic operations and run
out of resources, when applied to apps with industrial complexity
and scalability. In this work, we present a multi-agent GUI MBT
system named Fastbot. Fastbot performs model construction on
the server end. It applies multi-agent collaboration mechanism to
speed up the model construction procedure. The proposed
approach was applied on more than 20 applications from
Bytedance with more than 1500 million monthly active users.
Higher code coverage in less testing time is achieved with
comparison of three other automated testing tools including
Droidbot, Humanoid and Android Monkey.

CCS CONCEPTS
• Software and its engineering → Software testing and
debugging; Model-based software engineering

KEYWORDS
Model-based GUI testing, dynamic DAG exploration, multi-agent
collaboration, automatic testing, traversal algorithm

1 Introduction
Nowadays, functionality of apps is getting increasingly complex.
The app with most robustness will have better competiveness in
the app stores. Therefore, automating test generation (ATG) for
apps becomes an important research direction.

AST '20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-7957-1/20/05.
https://doi.org/10.1145/3387903.3389308

GUI-based ATG techniques have been widely studied, such as
model-based testing, search-based testing, coverage-guided
fuzzing and symbolic execution. Unlike the ATG methods based
on code analysis which require full control flow graph generated
from source code, testing based on GUI has the ability to build
app model based on the UI information. The state-of-the-art tools
includes SAPIENZ [1], which applies random fuzzing, systematic
and search-based exploration; DYNODROID [2], which views the
app as sequences of events and generates relevant, intelligent
inputs; other popular tools include DroidMate [3], PUMA and
Android Monkey by Google.
Particularly, model based testing (MBT) in ATG obtains great
advantage for better reusability. Droidbot [4] is one of the cut-
edge GUI-based MBT tools, which performs on-the-fly model-
based testing with graph exploration algorithms. Humanoid [5]
brought by Peking University brought up the new strategy of
guiding exploration event by user-behaviors. Mostly, model-based
GUI tests are based on 2 artifacts: The Finite State Machine (FSM)
which describes all possible testing paths, and the operational
profiles which describe the transition from one state to another.
However, there are two disadvantages for the traditional model-
based methods, when applied to apps with industrial complexity
and scalability. Firstly, it is easy to fall into cyclic operations in
similar pages using the "GUI changed" as the exploration strategy
for the state judgement. By applying DFS and BFS algorithm in
exploration process, these tools including DROIDBOT may keep
trapping in same scenarios which severely limits the activity
coverage. While for Humanoid, the accessibility of user-behavior
data becomes largest obstacle. Secondly, the rapidly expanding
model will take up the memory of the mobile devices.
To deal with the above-mentioned problems, we proposed Fastbot,
a Model-based Automatic Test Generation system, where we
achieved multi-client collaboration model construction mechanism,
and applied algorithms based on UCB algorithm [6] and
reinforcement learning to achieve better exploration capability.

93

2020 IEEE/ACM 1st International Conference on Automation of Software Test (AST)

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs International 4.0 License.

https://creativecommons.org/licenses/by-nc-nd/4.0/

2 Design and Implementation

2.1 Fastbot Workflow
As mentioned above, the memory and calculation capability of
mobile devices have become the main limitation for model-based
GUI testing. By applying distributed computing system, Fastbot
moves the model-related computationally expensive part onto
server end and only keeps UI information collection and action
injection job on client end. The workflow is shown in Figure1.

Figure 1: Fastbot System Workflow

The Fastbot system supports multiple app testing tasks working
simultaneously without affecting each other. For every single task,
the App Under Test (AUT) and user-defined configurations will
be deployed on multiple mobile devices. On each device, a
Fastbot client will take charge of UI recognition and event
injection work. Obtained UI info of current state will be sent to
server through the socket agents. Correspondingly, on server end
there are agents analyzing the received UI info, formatting this
info into a so-called state as input of the algorithms in AI-core.
Each agent will select next event based on their input state,
assigned algorithms, and the model info, meanwhile collaborate to
construct a static model stored in server memory. Selected events
will be transferred back to client side for execution, then new UI-
info will be captured and sent back to server again. In this process,
data of crash info, code coverage and effective paths will be
collected for data analyzing, case replay and test generation.

2.2 Fastbot Model Description
By defining state as abstraction of UI info on current page and
actions as the events to take, a directed acyclic graph is
constructed from the event trace of clients with state as graph
nodes and actions as edges. The model in Fastbot is based on this
DAG. The left part in Figure 2 shows a brief example of our
model. The arrow dashed lines represent actions that directs and
connects the states shown in circles. With multi-agent
collaborating, our composite model is shown in the right part of
Figure 2, where each color represents the traversal path of a
unique agent.
Defining states with fine granularity is a challenging job. Without
any abstraction on GUI info, the amount of states will explode

sharply resulting in OOM problem on server for the reason of
unlimited Feed Pages and so on. Through our work, the state
abstraction function defined by Activity name, Action Type and
widgets distribution obtained from flattened GUI tree structure is
observed to have best performance.

Figure 2: DAG Model

2.3 Algorithms in AI core
Traditional traversal algorithms based on DFS and BFS have their
limitation on a dynamic DAG model built on dynamic app rather
than native app, where duplicated path is not promised to lead to
constant destination, for the reason of the disturb from forever-
changing contents in Feed Pages. Here, we present the following
better fitting algorithms in this scenario.
Aiming to cover more actions in every state, we define the priority
of a state as the total value of actions in this state, where value of
action is determined by action type and action visited tag. States
with higher priority are of more value to be visited again.
For greedy algorithm that always distributes actions with max
target priority, the actions leading to Feed Page state that cannot
be reached again will trap the agent in infinite loops.
Our first algorithm is based on one-step UCB equation (upper
confidence bound) [6] to balance exploration and exploitation. In
cases where state still has unvisited actions, the action priority
simply equals previously defined action value. Otherwise, the
priority of action is denoted as UCB value calculated from
Equation 1 with corresponding illustration in Figure 3.

(1)

Figure 3: Definition of One-Step UCB

One of the drawbacks of the above-mentioned strategy is that it
only calculates the UCB value within one step, while states hiding
several steps behind may have higher value to be visited. The n-

94

step UCB algorithm is brought up as an optimization to overcome
this drawback. Instead of the using priority of action’s target state
in UCB equation, we use accumulation of all the target priority
multiplied by discount factor in the following n steps as Pt in
Equation 1. The n-step UCB value of Action is given in Equation
2. However, this algorithm requires traversal in the following n
steps and demands an exponential time complexity. A gradually-
increasing step number n fits best in this scenario.

(2)

The algorithm is described in the following pseudocode:
Algorithm 1: Action selection with UCB on DAG model

While test not finished:
Receive GUI-Tree from clients
Current state
Update model with current state and previous movement

For actions in current state:
Calculate one-step or n-step UCB value of actions

Select action based on UCB value
Mark selected action as visited, update action value and state
priority

 Send Action back to clients for execution

Still, the information beyond n steps is not fully utilized for the
current decision, since backpropagation is not applicable on DAG.
Another algorithm named MTree is designed inspired by Monte-
Carolo Search Tree Algorithm applied in AlphaGo [7], where we
use tree structure in addition of DAG as our model. Each tree
node represents one state, and the target states leading by the
actions in tree node are added as child nodes. The actions leading
to a previous visited state is added as step child to prevent cycle.
An activity list is stored in every tree node suggesting the
following reachable activities. When new activities are discovered,
a backpropagation process from current node to the root will be
applied, updating the activity list in child nodes. An example of
MTree structure is shown in Figure 4. Each color represents a
unique activity. Starting from State 0 as root node, the tree
structure expands downward during the process of exploration.
Action 5 shown in dashed line leads back to the visited Root Node
and forms a cycle; thus, we add State 5 as step child node. Step
children won’t involve in the backpropagation or action selection
process. The use of them is to navigate back when all the
following children are saturated. Correspondingly, in the action
selection part, exploration for unvisited actions is still the main
choice; for the visited actions, we have the UCB equation for
actions leading to child nodes shown in Equation 3, where Vc and
Vp means visit count of child node and parent node.

Algorithm 2: MTree Algorithm

…
Current state
Build tree node N from current state
If N not in MTree:
 Add N as previous state node’s child

 Update reachable activity list from current node to root

Else:
 Add N as step child
For unvisited actions and actions pointing to child nodes:
 Calculate UCB value of target node by action
If no children and no unvisited actions:

Select action from step children
Else:
 Select action according to UCB value
Send Action back to clients for execution

Figure 4: An Example of MTree

 (3)

Q-Learning algorithm capturing action selection feature on DAG
model also brought smart navigation. In this algorithm, Q value is
calculated for every state-action pair with forward actions gets
positive reward based on a state difference function, while actions
leading to visited states will get negative rewards based on visit
count. Thus, agent learns to avoid infinite loop and discover new
states. N-step Q-learning with UCB is applied for optimization.

Algorithm 3: Q-learning with State-Diff Reward Function

…
Update model based on current state and previous

movement
Reward

For actions in current state:
 Get UCB of action based on Q(current State, action)
Select action based on UCB value
…

3 Results
Fastbot has already been integrated into Bytedance testing
framework, serving more than 20 applications as the main
stability and compatibility testing tool. Over 300 daily-build tasks
are scheduled, applied with various customized configuration to
match the demand from every product line. Around 5,000 crashes
are being exposed by Fastbot every day, among which more than
100 crashes are newly discovered. The crash info is reported to
our bug system and assigned to related developers for

95

investigation. With this tool, the culprit patch is assumed to be
found and fixed before app released.
The following experimental evaluation includes code coverage
and activity coverage data on one of our app named Toutiao.
Table 1 shows one-hour and three-hour testing data on a single
device. Comparing with the popular traversal testing tools
including Monkey, Droidbot and Humanoid, Fastbot achieved a
much higher coverage performance.

Table 1: Coverage Comparison
Moreover, Fastbot’s multi-device collaboration in client/server
pattern dramatically enhances the exploration capability. Figure 5
shows the activity coverage performance of Fastbot working on 1,
3, 20 and 50 devices. Obviously, multiple devices collaboration
brings a higher coverage rate and faster exploartion speed. Up to
100 devices collaborating on a single model for 50 hours are
supported by our distributed system on server end, resulting in a
47.88% activity coverage, without triggering OOM problem or
slowing down the action decision speed. As Table2 shows, three
clients collaboration by Fastbot achieved a 84% activity coverage
enchancement compared to single device test, while for Droidbot
and Humanoid, the enhancement from one device to three devices
is only 20.41% and 24.97%, and for Monkey is 45.79%.

Table 2: Effect of device number

Figure 5: Coverage Comparison on multiple clients

Figure 6 compares the traversing capability by the four above-
mentioned algorithms, together with traditional DFS and Random

algorithm. Each test is deployed with 20 devices. As shown in the
figure, DFS agent stuck soon in the internal loops, and activity
coverage stops increasing. Random Agent has better performance
in the dynamic DAG circumstances, achieving around 26%
coverage. One-step UCB algorithm possesses best exploration
speed at the early stage, while the potential to discover activities
hidden behind complex path becomes its weakness. On the
contrary, coverage rate of n-step UCB agent grows slower for the
reason of (n-1) repeated actions it needs to cover before reaching
target state, but in later periods it demonstrates better exploration
capability for the deeper inception. Performance of DQN agent is
unstable. It has upper-limit better than n-step agent, and in the
meantime, requires less computation resources. Nevertheless, the
performance is severely affected by the uncontrollable action
choices in early exploration stage. Among our tests, the MTree
Agent exhibits best overall performance.

Figure 6: Algorithm Coverage Comparison

REFERENCES
 [1] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated

testing for Android applications. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA 2016). Association for
Computing Machinery, New York, NY, USA, 94–105.

[2] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: an input
generation system for Android apps. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2013).
Association for Computing Machinery, New York, NY, USA, 224–234.

[3] K. Jamrozik and A. Zeller, "DroidMate: A Robust and Extensible Test
Generator for Android," 2016 IEEE/ACM International Conference on Mobile
Software Engineering and Systems (MOBILESoft), Austin, TX, 2016, pp. 293-
294.

[4] Yuanchun Li, Ziyue Yang, Yao Guo and Xiangqun Chen, "DroidBot: a
lightweight UI-Guided test input generator for android," 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C),
Buenos Aires, 2017, pp. 23-26.

[5] Li, Yuanchun, et al. "A Deep Learning based Approach to Automated Android
App Testing." arXiv preprint arXiv:1901.02633 (2019).

[6] Carpentier, Alexandra & Lazaric, Alessandro & Ghavamzadeh, Mohammad &
Munos, Remi & Auer, Peter. (2011). Upper-Confidence-Bound Algorithms for
Active Learning in Multi-Armed Bandits. 6925. 189-203. 10.1007/978-3-642-
24412-4_17.

[7] Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep
neural networks and tree search. Nature 529, 484–489 (2016).

Metrics Droidbot Monkey Humanoid Fastbot
Activity Coverage/1h 4.31% —— 4.33% 16.14%
Code Coverage/1h 8.33% 9.79% 8.73% 19.00%
Activity Coverage/3h 6.10% —— 6.34% 18.07%
Code Coverage/3h 11.33% 14.70% 12.05% 23.00%

Code Coverage/1h Droidbot Monkey Humanoid Fastbot

One Device 8.33% 9.79% 8.73% 19.00%
Three Devices 10.03% 14.28% 10.91% 35.00%

96

